ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc2 Unicode version

Theorem sucinc2 6555
Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.)
Hypothesis
Ref Expression
sucinc.1  |-  F  =  ( z  e.  _V  |->  suc  z )
Assertion
Ref Expression
sucinc2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  A
)  C_  ( F `  B ) )
Distinct variable groups:    z, A    z, B
Allowed substitution hint:    F( z)

Proof of Theorem sucinc2
StepHypRef Expression
1 eloni 4440 . . . . 5  |-  ( B  e.  On  ->  Ord  B )
2 ordsucss 4570 . . . . 5  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
31, 2syl 14 . . . 4  |-  ( B  e.  On  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
43imp 124 . . 3  |-  ( ( B  e.  On  /\  A  e.  B )  ->  suc  A  C_  B
)
5 sssucid 4480 . . 3  |-  B  C_  suc  B
64, 5sstrdi 3213 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  suc  A  C_  suc  B )
7 onelon 4449 . . 3  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
8 elex 2788 . . . 4  |-  ( A  e.  On  ->  A  e.  _V )
9 sucexg 4564 . . . 4  |-  ( A  e.  On  ->  suc  A  e.  _V )
10 suceq 4467 . . . . 5  |-  ( z  =  A  ->  suc  z  =  suc  A )
11 sucinc.1 . . . . 5  |-  F  =  ( z  e.  _V  |->  suc  z )
1210, 11fvmptg 5678 . . . 4  |-  ( ( A  e.  _V  /\  suc  A  e.  _V )  ->  ( F `  A
)  =  suc  A
)
138, 9, 12syl2anc 411 . . 3  |-  ( A  e.  On  ->  ( F `  A )  =  suc  A )
147, 13syl 14 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  A
)  =  suc  A
)
15 elex 2788 . . . 4  |-  ( B  e.  On  ->  B  e.  _V )
16 sucexg 4564 . . . 4  |-  ( B  e.  On  ->  suc  B  e.  _V )
17 suceq 4467 . . . . 5  |-  ( z  =  B  ->  suc  z  =  suc  B )
1817, 11fvmptg 5678 . . . 4  |-  ( ( B  e.  _V  /\  suc  B  e.  _V )  ->  ( F `  B
)  =  suc  B
)
1915, 16, 18syl2anc 411 . . 3  |-  ( B  e.  On  ->  ( F `  B )  =  suc  B )
2019adantr 276 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  B
)  =  suc  B
)
216, 14, 203sstr4d 3246 1  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  A
)  C_  ( F `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174    |-> cmpt 4121   Ord word 4427   Oncon0 4428   suc csuc 4430   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator