ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc2 Unicode version

Theorem sucinc2 6592
Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.)
Hypothesis
Ref Expression
sucinc.1  |-  F  =  ( z  e.  _V  |->  suc  z )
Assertion
Ref Expression
sucinc2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  A
)  C_  ( F `  B ) )
Distinct variable groups:    z, A    z, B
Allowed substitution hint:    F( z)

Proof of Theorem sucinc2
StepHypRef Expression
1 eloni 4466 . . . . 5  |-  ( B  e.  On  ->  Ord  B )
2 ordsucss 4596 . . . . 5  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
31, 2syl 14 . . . 4  |-  ( B  e.  On  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
43imp 124 . . 3  |-  ( ( B  e.  On  /\  A  e.  B )  ->  suc  A  C_  B
)
5 sssucid 4506 . . 3  |-  B  C_  suc  B
64, 5sstrdi 3236 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  suc  A  C_  suc  B )
7 onelon 4475 . . 3  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
8 elex 2811 . . . 4  |-  ( A  e.  On  ->  A  e.  _V )
9 sucexg 4590 . . . 4  |-  ( A  e.  On  ->  suc  A  e.  _V )
10 suceq 4493 . . . . 5  |-  ( z  =  A  ->  suc  z  =  suc  A )
11 sucinc.1 . . . . 5  |-  F  =  ( z  e.  _V  |->  suc  z )
1210, 11fvmptg 5710 . . . 4  |-  ( ( A  e.  _V  /\  suc  A  e.  _V )  ->  ( F `  A
)  =  suc  A
)
138, 9, 12syl2anc 411 . . 3  |-  ( A  e.  On  ->  ( F `  A )  =  suc  A )
147, 13syl 14 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  A
)  =  suc  A
)
15 elex 2811 . . . 4  |-  ( B  e.  On  ->  B  e.  _V )
16 sucexg 4590 . . . 4  |-  ( B  e.  On  ->  suc  B  e.  _V )
17 suceq 4493 . . . . 5  |-  ( z  =  B  ->  suc  z  =  suc  B )
1817, 11fvmptg 5710 . . . 4  |-  ( ( B  e.  _V  /\  suc  B  e.  _V )  ->  ( F `  B
)  =  suc  B
)
1915, 16, 18syl2anc 411 . . 3  |-  ( B  e.  On  ->  ( F `  B )  =  suc  B )
2019adantr 276 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  B
)  =  suc  B
)
216, 14, 203sstr4d 3269 1  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  A
)  C_  ( F `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197    |-> cmpt 4145   Ord word 4453   Oncon0 4454   suc csuc 4456   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator