ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucinc2 Unicode version

Theorem sucinc2 6414
Description: Successor is increasing. (Contributed by Jim Kingdon, 14-Jul-2019.)
Hypothesis
Ref Expression
sucinc.1  |-  F  =  ( z  e.  _V  |->  suc  z )
Assertion
Ref Expression
sucinc2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  A
)  C_  ( F `  B ) )
Distinct variable groups:    z, A    z, B
Allowed substitution hint:    F( z)

Proof of Theorem sucinc2
StepHypRef Expression
1 eloni 4353 . . . . 5  |-  ( B  e.  On  ->  Ord  B )
2 ordsucss 4481 . . . . 5  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
31, 2syl 14 . . . 4  |-  ( B  e.  On  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
43imp 123 . . 3  |-  ( ( B  e.  On  /\  A  e.  B )  ->  suc  A  C_  B
)
5 sssucid 4393 . . 3  |-  B  C_  suc  B
64, 5sstrdi 3154 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  suc  A  C_  suc  B )
7 onelon 4362 . . 3  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
8 elex 2737 . . . 4  |-  ( A  e.  On  ->  A  e.  _V )
9 sucexg 4475 . . . 4  |-  ( A  e.  On  ->  suc  A  e.  _V )
10 suceq 4380 . . . . 5  |-  ( z  =  A  ->  suc  z  =  suc  A )
11 sucinc.1 . . . . 5  |-  F  =  ( z  e.  _V  |->  suc  z )
1210, 11fvmptg 5562 . . . 4  |-  ( ( A  e.  _V  /\  suc  A  e.  _V )  ->  ( F `  A
)  =  suc  A
)
138, 9, 12syl2anc 409 . . 3  |-  ( A  e.  On  ->  ( F `  A )  =  suc  A )
147, 13syl 14 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  A
)  =  suc  A
)
15 elex 2737 . . . 4  |-  ( B  e.  On  ->  B  e.  _V )
16 sucexg 4475 . . . 4  |-  ( B  e.  On  ->  suc  B  e.  _V )
17 suceq 4380 . . . . 5  |-  ( z  =  B  ->  suc  z  =  suc  B )
1817, 11fvmptg 5562 . . . 4  |-  ( ( B  e.  _V  /\  suc  B  e.  _V )  ->  ( F `  B
)  =  suc  B
)
1915, 16, 18syl2anc 409 . . 3  |-  ( B  e.  On  ->  ( F `  B )  =  suc  B )
2019adantr 274 . 2  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  B
)  =  suc  B
)
216, 14, 203sstr4d 3187 1  |-  ( ( B  e.  On  /\  A  e.  B )  ->  ( F `  A
)  C_  ( F `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    C_ wss 3116    |-> cmpt 4043   Ord word 4340   Oncon0 4341   suc csuc 4343   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator