ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oawordi Unicode version

Theorem oawordi 6536
Description: Weak ordering property of ordinal addition. (Contributed by Jim Kingdon, 27-Jul-2019.)
Assertion
Ref Expression
oawordi  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  C_  B  ->  ( C  +o  A )  C_  ( C  +o  B
) ) )

Proof of Theorem oawordi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oafnex 6511 . . . . 5  |-  ( x  e.  _V  |->  suc  x
)  Fn  _V
21a1i 9 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  A  C_  B )  ->  ( x  e. 
_V  |->  suc  x )  Fn  _V )
3 simpl3 1004 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  A  C_  B )  ->  C  e.  On )
4 simpl1 1002 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  A  C_  B )  ->  A  e.  On )
5 simpl2 1003 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  A  C_  B )  ->  B  e.  On )
6 simpr 110 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  A  C_  B )  ->  A  C_  B
)
72, 3, 4, 5, 6rdgss 6450 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  A  C_  B )  ->  ( rec (
( x  e.  _V  |->  suc  x ) ,  C
) `  A )  C_  ( rec ( ( x  e.  _V  |->  suc  x ) ,  C
) `  B )
)
83, 4jca 306 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  A  C_  B )  ->  ( C  e.  On  /\  A  e.  On ) )
9 oav 6521 . . . 4  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  +o  A
)  =  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  C ) `  A
) )
108, 9syl 14 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  A  C_  B )  ->  ( C  +o  A )  =  ( rec ( ( x  e.  _V  |->  suc  x
) ,  C ) `
 A ) )
113, 5jca 306 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  A  C_  B )  ->  ( C  e.  On  /\  B  e.  On ) )
12 oav 6521 . . . 4  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( C  +o  B
)  =  ( rec ( ( x  e. 
_V  |->  suc  x ) ,  C ) `  B
) )
1311, 12syl 14 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  A  C_  B )  ->  ( C  +o  B )  =  ( rec ( ( x  e.  _V  |->  suc  x
) ,  C ) `
 B ) )
147, 10, 133sstr4d 3229 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  A  C_  B )  ->  ( C  +o  A )  C_  ( C  +o  B ) )
1514ex 115 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  C_  B  ->  ( C  +o  A )  C_  ( C  +o  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157    |-> cmpt 4095   Oncon0 4399   suc csuc 4401    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   reccrdg 6436    +o coa 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-irdg 6437  df-oadd 6487
This theorem is referenced by:  oaword1  6538
  Copyright terms: Public domain W3C validator