![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5p2e7 | GIF version |
Description: 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p2e7 | ⊢ (5 + 2) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8471 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 5655 | . . . 4 ⊢ (5 + 2) = (5 + (1 + 1)) |
3 | 5cn 8492 | . . . . 5 ⊢ 5 ∈ ℂ | |
4 | ax-1cn 7428 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 7486 | . . . 4 ⊢ ((5 + 1) + 1) = (5 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2111 | . . 3 ⊢ (5 + 2) = ((5 + 1) + 1) |
7 | df-6 8475 | . . . 4 ⊢ 6 = (5 + 1) | |
8 | 7 | oveq1i 5654 | . . 3 ⊢ (6 + 1) = ((5 + 1) + 1) |
9 | 6, 8 | eqtr4i 2111 | . 2 ⊢ (5 + 2) = (6 + 1) |
10 | df-7 8476 | . 2 ⊢ 7 = (6 + 1) | |
11 | 9, 10 | eqtr4i 2111 | 1 ⊢ (5 + 2) = 7 |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 (class class class)co 5644 1c1 7341 + caddc 7343 2c2 8463 5c5 8466 6c6 8467 7c7 8468 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-resscn 7427 ax-1cn 7428 ax-1re 7429 ax-addrcl 7432 ax-addass 7437 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-br 3844 df-iota 4975 df-fv 5018 df-ov 5647 df-2 8471 df-3 8472 df-4 8473 df-5 8474 df-6 8475 df-7 8476 |
This theorem is referenced by: 5p3e8 8553 |
Copyright terms: Public domain | W3C validator |