ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p4e8 Unicode version

Theorem 4p4e8 8769
Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
4p4e8  |-  ( 4  +  4 )  =  8

Proof of Theorem 4p4e8
StepHypRef Expression
1 df-4 8691 . . . 4  |-  4  =  ( 3  +  1 )
21oveq2i 5739 . . 3  |-  ( 4  +  4 )  =  ( 4  +  ( 3  +  1 ) )
3 4cn 8708 . . . 4  |-  4  e.  CC
4 3cn 8705 . . . 4  |-  3  e.  CC
5 ax-1cn 7638 . . . 4  |-  1  e.  CC
63, 4, 5addassi 7698 . . 3  |-  ( ( 4  +  3 )  +  1 )  =  ( 4  +  ( 3  +  1 ) )
72, 6eqtr4i 2138 . 2  |-  ( 4  +  4 )  =  ( ( 4  +  3 )  +  1 )
8 df-8 8695 . . 3  |-  8  =  ( 7  +  1 )
9 4p3e7 8768 . . . 4  |-  ( 4  +  3 )  =  7
109oveq1i 5738 . . 3  |-  ( ( 4  +  3 )  +  1 )  =  ( 7  +  1 )
118, 10eqtr4i 2138 . 2  |-  8  =  ( ( 4  +  3 )  +  1 )
127, 11eqtr4i 2138 1  |-  ( 4  +  4 )  =  8
Colors of variables: wff set class
Syntax hints:    = wceq 1314  (class class class)co 5728   1c1 7548    + caddc 7550   3c3 8682   4c4 8683   7c7 8686   8c8 8687
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-addrcl 7642  ax-addass 7647
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-rex 2396  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-iota 5046  df-fv 5089  df-ov 5731  df-2 8689  df-3 8690  df-4 8691  df-5 8692  df-6 8693  df-7 8694  df-8 8695
This theorem is referenced by:  4t2e8  8782
  Copyright terms: Public domain W3C validator