ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsdsg Unicode version

Theorem setsmsdsg 12649
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x  |-  ( ph  ->  X  =  ( Base `  M ) )
setsms.d  |-  ( ph  ->  D  =  ( (
dist `  M )  |`  ( X  X.  X
) ) )
setsms.k  |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )
setsmsbasg.m  |-  ( ph  ->  M  e.  V )
setsmsbasg.d  |-  ( ph  ->  ( MetOpen `  D )  e.  W )
Assertion
Ref Expression
setsmsdsg  |-  ( ph  ->  ( dist `  M
)  =  ( dist `  K ) )

Proof of Theorem setsmsdsg
StepHypRef Expression
1 setsmsbasg.m . . 3  |-  ( ph  ->  M  e.  V )
2 setsmsbasg.d . . 3  |-  ( ph  ->  ( MetOpen `  D )  e.  W )
3 dsslid 12119 . . . 4  |-  ( dist 
= Slot  ( dist `  ndx )  /\  ( dist `  ndx )  e.  NN )
4 9re 8807 . . . . . 6  |-  9  e.  RR
5 1nn 8731 . . . . . . 7  |-  1  e.  NN
6 2nn0 8994 . . . . . . 7  |-  2  e.  NN0
7 9nn0 9001 . . . . . . 7  |-  9  e.  NN0
8 9lt10 9312 . . . . . . 7  |-  9  < ; 1
0
95, 6, 7, 8declti 9219 . . . . . 6  |-  9  < ; 1
2
104, 9gtneii 7859 . . . . 5  |- ; 1 2  =/=  9
11 dsndx 12117 . . . . . 6  |-  ( dist `  ndx )  = ; 1 2
12 tsetndx 12107 . . . . . 6  |-  (TopSet `  ndx )  =  9
1311, 12neeq12i 2325 . . . . 5  |-  ( (
dist `  ndx )  =/=  (TopSet `  ndx )  <-> ; 1 2  =/=  9
)
1410, 13mpbir 145 . . . 4  |-  ( dist `  ndx )  =/=  (TopSet ` 
ndx )
15 tsetslid 12109 . . . . 5  |-  (TopSet  = Slot  (TopSet `  ndx )  /\  (TopSet `  ndx )  e.  NN )
1615simpri 112 . . . 4  |-  (TopSet `  ndx )  e.  NN
173, 14, 16setsslnid 12010 . . 3  |-  ( ( M  e.  V  /\  ( MetOpen `  D )  e.  W )  ->  ( dist `  M )  =  ( dist `  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. )
) )
181, 2, 17syl2anc 408 . 2  |-  ( ph  ->  ( dist `  M
)  =  ( dist `  ( M sSet  <. (TopSet ` 
ndx ) ,  (
MetOpen `  D ) >.
) ) )
19 setsms.k . . 3  |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )
2019fveq2d 5425 . 2  |-  ( ph  ->  ( dist `  K
)  =  ( dist `  ( M sSet  <. (TopSet ` 
ndx ) ,  (
MetOpen `  D ) >.
) ) )
2118, 20eqtr4d 2175 1  |-  ( ph  ->  ( dist `  M
)  =  ( dist `  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480    =/= wne 2308   <.cop 3530    X. cxp 4537    |` cres 4541   ` cfv 5123  (class class class)co 5774   1c1 7621   NNcn 8720   2c2 8771   9c9 8778  ;cdc 9182   ndxcnx 11956   sSet csts 11957  Slot cslot 11958   Basecbs 11959  TopSetcts 12027   distcds 12030   MetOpencmopn 12154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783  df-7 8784  df-8 8785  df-9 8786  df-n0 8978  df-z 9055  df-dec 9183  df-ndx 11962  df-slot 11963  df-sets 11966  df-tset 12040  df-ds 12043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator