ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsdsg Unicode version

Theorem setsmsdsg 13120
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x  |-  ( ph  ->  X  =  ( Base `  M ) )
setsms.d  |-  ( ph  ->  D  =  ( (
dist `  M )  |`  ( X  X.  X
) ) )
setsms.k  |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )
setsmsbasg.m  |-  ( ph  ->  M  e.  V )
setsmsbasg.d  |-  ( ph  ->  ( MetOpen `  D )  e.  W )
Assertion
Ref Expression
setsmsdsg  |-  ( ph  ->  ( dist `  M
)  =  ( dist `  K ) )

Proof of Theorem setsmsdsg
StepHypRef Expression
1 setsmsbasg.m . . 3  |-  ( ph  ->  M  e.  V )
2 setsmsbasg.d . . 3  |-  ( ph  ->  ( MetOpen `  D )  e.  W )
3 dsslid 12555 . . . 4  |-  ( dist 
= Slot  ( dist `  ndx )  /\  ( dist `  ndx )  e.  NN )
4 9re 8944 . . . . . 6  |-  9  e.  RR
5 1nn 8868 . . . . . . 7  |-  1  e.  NN
6 2nn0 9131 . . . . . . 7  |-  2  e.  NN0
7 9nn0 9138 . . . . . . 7  |-  9  e.  NN0
8 9lt10 9452 . . . . . . 7  |-  9  < ; 1
0
95, 6, 7, 8declti 9359 . . . . . 6  |-  9  < ; 1
2
104, 9gtneii 7994 . . . . 5  |- ; 1 2  =/=  9
11 dsndx 12553 . . . . . 6  |-  ( dist `  ndx )  = ; 1 2
12 tsetndx 12543 . . . . . 6  |-  (TopSet `  ndx )  =  9
1311, 12neeq12i 2353 . . . . 5  |-  ( (
dist `  ndx )  =/=  (TopSet `  ndx )  <-> ; 1 2  =/=  9
)
1410, 13mpbir 145 . . . 4  |-  ( dist `  ndx )  =/=  (TopSet ` 
ndx )
15 tsetslid 12545 . . . . 5  |-  (TopSet  = Slot  (TopSet `  ndx )  /\  (TopSet `  ndx )  e.  NN )
1615simpri 112 . . . 4  |-  (TopSet `  ndx )  e.  NN
173, 14, 16setsslnid 12445 . . 3  |-  ( ( M  e.  V  /\  ( MetOpen `  D )  e.  W )  ->  ( dist `  M )  =  ( dist `  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. )
) )
181, 2, 17syl2anc 409 . 2  |-  ( ph  ->  ( dist `  M
)  =  ( dist `  ( M sSet  <. (TopSet ` 
ndx ) ,  (
MetOpen `  D ) >.
) ) )
19 setsms.k . . 3  |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )
2019fveq2d 5490 . 2  |-  ( ph  ->  ( dist `  K
)  =  ( dist `  ( M sSet  <. (TopSet ` 
ndx ) ,  (
MetOpen `  D ) >.
) ) )
2118, 20eqtr4d 2201 1  |-  ( ph  ->  ( dist `  M
)  =  ( dist `  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    =/= wne 2336   <.cop 3579    X. cxp 4602    |` cres 4606   ` cfv 5188  (class class class)co 5842   1c1 7754   NNcn 8857   2c2 8908   9c9 8915  ;cdc 9322   ndxcnx 12391   sSet csts 12392  Slot cslot 12393   Basecbs 12394  TopSetcts 12463   distcds 12466   MetOpencmopn 12625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-dec 9323  df-ndx 12397  df-slot 12398  df-sets 12401  df-tset 12476  df-ds 12479
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator