ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsdsg Unicode version

Theorem setsmsdsg 14952
Description: The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x  |-  ( ph  ->  X  =  ( Base `  M ) )
setsms.d  |-  ( ph  ->  D  =  ( (
dist `  M )  |`  ( X  X.  X
) ) )
setsms.k  |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )
setsmsbasg.m  |-  ( ph  ->  M  e.  V )
setsmsbasg.d  |-  ( ph  ->  ( MetOpen `  D )  e.  W )
Assertion
Ref Expression
setsmsdsg  |-  ( ph  ->  ( dist `  M
)  =  ( dist `  K ) )

Proof of Theorem setsmsdsg
StepHypRef Expression
1 setsmsbasg.m . . 3  |-  ( ph  ->  M  e.  V )
2 setsmsbasg.d . . 3  |-  ( ph  ->  ( MetOpen `  D )  e.  W )
3 dsslid 13049 . . . 4  |-  ( dist 
= Slot  ( dist `  ndx )  /\  ( dist `  ndx )  e.  NN )
4 9re 9123 . . . . . 6  |-  9  e.  RR
5 1nn 9047 . . . . . . 7  |-  1  e.  NN
6 2nn0 9312 . . . . . . 7  |-  2  e.  NN0
7 9nn0 9319 . . . . . . 7  |-  9  e.  NN0
8 9lt10 9634 . . . . . . 7  |-  9  < ; 1
0
95, 6, 7, 8declti 9541 . . . . . 6  |-  9  < ; 1
2
104, 9gtneii 8168 . . . . 5  |- ; 1 2  =/=  9
11 dsndx 13047 . . . . . 6  |-  ( dist `  ndx )  = ; 1 2
12 tsetndx 13018 . . . . . 6  |-  (TopSet `  ndx )  =  9
1311, 12neeq12i 2393 . . . . 5  |-  ( (
dist `  ndx )  =/=  (TopSet `  ndx )  <-> ; 1 2  =/=  9
)
1410, 13mpbir 146 . . . 4  |-  ( dist `  ndx )  =/=  (TopSet ` 
ndx )
15 tsetslid 13020 . . . . 5  |-  (TopSet  = Slot  (TopSet `  ndx )  /\  (TopSet `  ndx )  e.  NN )
1615simpri 113 . . . 4  |-  (TopSet `  ndx )  e.  NN
173, 14, 16setsslnid 12884 . . 3  |-  ( ( M  e.  V  /\  ( MetOpen `  D )  e.  W )  ->  ( dist `  M )  =  ( dist `  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. )
) )
181, 2, 17syl2anc 411 . 2  |-  ( ph  ->  ( dist `  M
)  =  ( dist `  ( M sSet  <. (TopSet ` 
ndx ) ,  (
MetOpen `  D ) >.
) ) )
19 setsms.k . . 3  |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )
2019fveq2d 5580 . 2  |-  ( ph  ->  ( dist `  K
)  =  ( dist `  ( M sSet  <. (TopSet ` 
ndx ) ,  (
MetOpen `  D ) >.
) ) )
2118, 20eqtr4d 2241 1  |-  ( ph  ->  ( dist `  M
)  =  ( dist `  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176    =/= wne 2376   <.cop 3636    X. cxp 4673    |` cres 4677   ` cfv 5271  (class class class)co 5944   1c1 7926   NNcn 9036   2c2 9087   9c9 9094  ;cdc 9504   ndxcnx 12829   sSet csts 12830  Slot cslot 12831   Basecbs 12832  TopSetcts 12915   distcds 12918   MetOpencmopn 14303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-dec 9505  df-ndx 12835  df-slot 12836  df-sets 12839  df-tset 12928  df-ds 12931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator