ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincos2sgn Unicode version

Theorem sincos2sgn 11776
Description: The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sincos2sgn  |-  ( 0  <  ( sin `  2
)  /\  ( cos `  2 )  <  0
)

Proof of Theorem sincos2sgn
StepHypRef Expression
1 2re 8992 . . . 4  |-  2  e.  RR
2 2pos 9013 . . . 4  |-  0  <  2
31leidi 8445 . . . 4  |-  2  <_  2
4 0xr 8007 . . . . 5  |-  0  e.  RR*
5 elioc2 9939 . . . . 5  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
2  e.  ( 0 (,] 2 )  <->  ( 2  e.  RR  /\  0  <  2  /\  2  <_ 
2 ) ) )
64, 1, 5mp2an 426 . . . 4  |-  ( 2  e.  ( 0 (,] 2 )  <->  ( 2  e.  RR  /\  0  <  2  /\  2  <_ 
2 ) )
71, 2, 3, 6mpbir3an 1179 . . 3  |-  2  e.  ( 0 (,] 2
)
8 sin02gt0 11774 . . 3  |-  ( 2  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  2
) )
97, 8ax-mp 5 . 2  |-  0  <  ( sin `  2
)
10 cos2bnd 11771 . . . 4  |-  ( -u ( 7  /  9
)  <  ( cos `  2 )  /\  ( cos `  2 )  <  -u ( 1  /  9
) )
1110simpri 113 . . 3  |-  ( cos `  2 )  <  -u ( 1  /  9
)
12 9re 9009 . . . . 5  |-  9  e.  RR
13 9pos 9026 . . . . 5  |-  0  <  9
1412, 13recgt0ii 8867 . . . 4  |-  0  <  ( 1  /  9
)
1512, 13gt0ap0ii 8588 . . . . . 6  |-  9 #  0
1612, 15rerecclapi 8737 . . . . 5  |-  ( 1  /  9 )  e.  RR
17 lt0neg2 8429 . . . . 5  |-  ( ( 1  /  9 )  e.  RR  ->  (
0  <  ( 1  /  9 )  <->  -u ( 1  /  9 )  <  0 ) )
1816, 17ax-mp 5 . . . 4  |-  ( 0  <  ( 1  / 
9 )  <->  -u ( 1  /  9 )  <  0 )
1914, 18mpbi 145 . . 3  |-  -u (
1  /  9 )  <  0
20 recoscl 11732 . . . . 5  |-  ( 2  e.  RR  ->  ( cos `  2 )  e.  RR )
211, 20ax-mp 5 . . . 4  |-  ( cos `  2 )  e.  RR
2216renegcli 8222 . . . 4  |-  -u (
1  /  9 )  e.  RR
23 0re 7960 . . . 4  |-  0  e.  RR
2421, 22, 23lttri 8065 . . 3  |-  ( ( ( cos `  2
)  <  -u ( 1  /  9 )  /\  -u ( 1  /  9
)  <  0 )  ->  ( cos `  2
)  <  0 )
2511, 19, 24mp2an 426 . 2  |-  ( cos `  2 )  <  0
269, 25pm3.2i 272 1  |-  ( 0  <  ( sin `  2
)  /\  ( cos `  2 )  <  0
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5878   RRcr 7813   0cc0 7814   1c1 7815   RR*cxr 7994    < clt 7995    <_ cle 7996   -ucneg 8132    / cdiv 8632   2c2 8973   7c7 8978   9c9 8980   (,]cioc 9892   sincsin 11655   cosccos 11656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-disj 3983  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-oadd 6424  df-er 6538  df-en 6744  df-dom 6745  df-fin 6746  df-sup 6986  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-5 8984  df-6 8985  df-7 8986  df-8 8987  df-9 8988  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-ioc 9896  df-ico 9897  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-fac 10709  df-bc 10731  df-ihash 10759  df-shft 10827  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365  df-ef 11659  df-sin 11661  df-cos 11662
This theorem is referenced by:  sin4lt0  11777  cosz12  14362
  Copyright terms: Public domain W3C validator