ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2logb9irr Unicode version

Theorem 2logb9irr 14866
Description: Example for logbgcd1irr 14862. The logarithm of nine to base two is not rational. Also see 2logb9irrap 14872 which says that it is irrational (in the sense of being apart from any rational number). (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
2logb9irr  |-  ( 2 logb  9 )  e.  ( RR 
\  QQ )

Proof of Theorem 2logb9irr
StepHypRef Expression
1 2z 9312 . . 3  |-  2  e.  ZZ
2 9nn 9118 . . . 4  |-  9  e.  NN
32nnzi 9305 . . 3  |-  9  e.  ZZ
4 2re 9020 . . . 4  |-  2  e.  RR
5 9re 9037 . . . 4  |-  9  e.  RR
6 2lt9 9153 . . . 4  |-  2  <  9
74, 5, 6ltleii 8091 . . 3  |-  2  <_  9
8 eluz2 9565 . . 3  |-  ( 9  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  9  e.  ZZ  /\  2  <_ 
9 ) )
91, 3, 7, 8mpbir3an 1181 . 2  |-  9  e.  ( ZZ>= `  2 )
10 uzid 9573 . . 3  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
111, 10ax-mp 5 . 2  |-  2  e.  ( ZZ>= `  2 )
12 sq3 10651 . . . . 5  |-  ( 3 ^ 2 )  =  9
1312eqcomi 2193 . . . 4  |-  9  =  ( 3 ^ 2 )
1413oveq1i 5907 . . 3  |-  ( 9  gcd  2 )  =  ( ( 3 ^ 2 )  gcd  2
)
15 2lt3 9120 . . . . . 6  |-  2  <  3
164, 15gtneii 8084 . . . . 5  |-  3  =/=  2
17 3prm 12163 . . . . . 6  |-  3  e.  Prime
18 2prm 12162 . . . . . 6  |-  2  e.  Prime
19 prmrp 12180 . . . . . 6  |-  ( ( 3  e.  Prime  /\  2  e.  Prime )  ->  (
( 3  gcd  2
)  =  1  <->  3  =/=  2 ) )
2017, 18, 19mp2an 426 . . . . 5  |-  ( ( 3  gcd  2 )  =  1  <->  3  =/=  2 )
2116, 20mpbir 146 . . . 4  |-  ( 3  gcd  2 )  =  1
22 3z 9313 . . . . 5  |-  3  e.  ZZ
23 2nn0 9224 . . . . 5  |-  2  e.  NN0
24 rpexp1i 12189 . . . . 5  |-  ( ( 3  e.  ZZ  /\  2  e.  ZZ  /\  2  e.  NN0 )  ->  (
( 3  gcd  2
)  =  1  -> 
( ( 3 ^ 2 )  gcd  2
)  =  1 ) )
2522, 1, 23, 24mp3an 1348 . . . 4  |-  ( ( 3  gcd  2 )  =  1  ->  (
( 3 ^ 2 )  gcd  2 )  =  1 )
2621, 25ax-mp 5 . . 3  |-  ( ( 3 ^ 2 )  gcd  2 )  =  1
2714, 26eqtri 2210 . 2  |-  ( 9  gcd  2 )  =  1
28 logbgcd1irr 14862 . 2  |-  ( ( 9  e.  ( ZZ>= ` 
2 )  /\  2  e.  ( ZZ>= `  2 )  /\  ( 9  gcd  2
)  =  1 )  ->  ( 2 logb  9 )  e.  ( RR  \  QQ ) )
299, 11, 27, 28mp3an 1348 1  |-  ( 2 logb  9 )  e.  ( RR 
\  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2160    =/= wne 2360    \ cdif 3141   class class class wbr 4018   ` cfv 5235  (class class class)co 5897   RRcr 7841   1c1 7843    <_ cle 8024   2c2 9001   3c3 9002   9c9 9008   NN0cn0 9207   ZZcz 9284   ZZ>=cuz 9559   QQcq 9651   ^cexp 10553    gcd cgcd 11978   Primecprime 12142   logb clogb 14838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962  ax-pre-suploc 7963  ax-addf 7964  ax-mulf 7965
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-disj 3996  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-of 6107  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-2o 6443  df-oadd 6446  df-er 6560  df-map 6677  df-pm 6678  df-en 6768  df-dom 6769  df-fin 6770  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-9 9016  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-xneg 9804  df-xadd 9805  df-ioo 9924  df-ico 9926  df-icc 9927  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-fac 10741  df-bc 10763  df-ihash 10791  df-shft 10859  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-sumdc 11397  df-ef 11691  df-e 11692  df-dvds 11830  df-gcd 11979  df-prm 12143  df-rest 12749  df-topgen 12768  df-psmet 13873  df-xmet 13874  df-met 13875  df-bl 13876  df-mopn 13877  df-top 13975  df-topon 13988  df-bases 14020  df-ntr 14073  df-cn 14165  df-cnp 14166  df-tx 14230  df-cncf 14535  df-limced 14602  df-dvap 14603  df-relog 14756  df-rpcxp 14757  df-logb 14839
This theorem is referenced by:  2irrexpq  14871  2irrexpqap  14873
  Copyright terms: Public domain W3C validator