ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlem1 Unicode version

Theorem acexmidlem1 5997
Description: Lemma for acexmid 6000. List the cases identified in acexmidlemcase 5996 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlem1  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
Distinct variable groups:    x, y, z, v, u, A    x, B, y, z, v, u   
x, C, y, z, v, u    ph, x, y, z, v, u

Proof of Theorem acexmidlem1
StepHypRef Expression
1 acexmidlem.a . . 3  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
2 acexmidlem.b . . 3  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
3 acexmidlem.c . . 3  |-  C  =  { A ,  B }
41, 2, 3acexmidlemcase 5996 . 2  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
51, 2, 3acexmidlema 5992 . . . 4  |-  ( {
(/) }  e.  A  ->  ph )
65orcd 738 . . 3  |-  ( {
(/) }  e.  A  ->  ( ph  \/  -.  ph ) )
71, 2, 3acexmidlemb 5993 . . . 4  |-  ( (/)  e.  B  ->  ph )
87orcd 738 . . 3  |-  ( (/)  e.  B  ->  ( ph  \/  -.  ph ) )
91, 2, 3acexmidlemab 5995 . . . 4  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  -.  ph )
109olcd 739 . . 3  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  ( ph  \/  -.  ph )
)
116, 8, 103jaoi 1337 . 2  |-  ( ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  ->  ( ph  \/  -.  ph ) )
124, 11syl 14 1  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    \/ w3o 1001    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   E!wreu 2510   {crab 2512   (/)c0 3491   {csn 3666   {cpr 3667   iota_crio 5953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-iota 5278  df-riota 5954
This theorem is referenced by:  acexmidlem2  5998
  Copyright terms: Public domain W3C validator