ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlem1 Unicode version

Theorem acexmidlem1 5887
Description: Lemma for acexmid 5890. List the cases identified in acexmidlemcase 5886 and hook them up to the lemmas which handle each case. (Contributed by Jim Kingdon, 7-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
acexmidlem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
acexmidlem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
acexmidlem1  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
Distinct variable groups:    x, y, z, v, u, A    x, B, y, z, v, u   
x, C, y, z, v, u    ph, x, y, z, v, u

Proof of Theorem acexmidlem1
StepHypRef Expression
1 acexmidlem.a . . 3  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
2 acexmidlem.b . . 3  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  ph ) }
3 acexmidlem.c . . 3  |-  C  =  { A ,  B }
41, 2, 3acexmidlemcase 5886 . 2  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) ) )
51, 2, 3acexmidlema 5882 . . . 4  |-  ( {
(/) }  e.  A  ->  ph )
65orcd 734 . . 3  |-  ( {
(/) }  e.  A  ->  ( ph  \/  -.  ph ) )
71, 2, 3acexmidlemb 5883 . . . 4  |-  ( (/)  e.  B  ->  ph )
87orcd 734 . . 3  |-  ( (/)  e.  B  ->  ( ph  \/  -.  ph ) )
91, 2, 3acexmidlemab 5885 . . . 4  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  -.  ph )
109olcd 735 . . 3  |-  ( ( ( iota_ v  e.  A  E. u  e.  y 
( A  e.  u  /\  v  e.  u
) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y 
( B  e.  u  /\  v  e.  u
) )  =  { (/)
} )  ->  ( ph  \/  -.  ph )
)
116, 8, 103jaoi 1314 . 2  |-  ( ( { (/) }  e.  A  \/  (/)  e.  B  \/  ( ( iota_ v  e.  A  E. u  e.  y  ( A  e.  u  /\  v  e.  u ) )  =  (/)  /\  ( iota_ v  e.  B  E. u  e.  y  ( B  e.  u  /\  v  e.  u ) )  =  { (/) } ) )  ->  ( ph  \/  -.  ph ) )
124, 11syl 14 1  |-  ( A. z  e.  C  E! v  e.  z  E. u  e.  y  (
z  e.  u  /\  v  e.  u )  ->  ( ph  \/  -.  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469   E!wreu 2470   {crab 2472   (/)c0 3437   {csn 3607   {cpr 3608   iota_crio 5846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-uni 3825  df-tr 4117  df-iord 4381  df-on 4383  df-suc 4386  df-iota 5193  df-riota 5847
This theorem is referenced by:  acexmidlem2  5888
  Copyright terms: Public domain W3C validator