ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcqcl Unicode version

Theorem pcqcl 12260
Description: Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcqcl  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  e.  ZZ )

Proof of Theorem pcqcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 526 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  N  e.  QQ )
2 elq 9581 . . 3  |-  ( N  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  /  y ) )
31, 2sylib 121 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  / 
y ) )
4 nncn 8886 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  CC )
5 nnap0 8907 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y #  0 )
64, 5div0apd 8704 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  (
0  /  y )  =  0 )
76ad2antll 488 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( 0  /  y )  =  0 )
8 oveq1 5860 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
98eqeq1d 2179 . . . . . . . . . 10  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
107, 9syl5ibrcom 156 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( x  =  0  ->  (
x  /  y )  =  0 ) )
1110necon3d 2384 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( (
x  /  y )  =/=  0  ->  x  =/=  0 ) )
12 an32 557 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  <->  ( ( x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN ) )
13 pcdiv 12256 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
14 pczcl 12252 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  e.  NN0 )
1514nn0zd 9332 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  e.  ZZ )
16153adant3 1012 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  x
)  e.  ZZ )
17 nnz 9231 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  e.  ZZ )
18 nnne0 8906 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  =/=  0 )
1917, 18jca 304 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  (
y  e.  ZZ  /\  y  =/=  0 ) )
20 pczcl 12252 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  ( P  pCnt  y )  e.  NN0 )
2120nn0zd 9332 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  ( P  pCnt  y )  e.  ZZ )
2219, 21sylan2 284 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  y  e.  NN )  ->  ( P  pCnt  y )  e.  ZZ )
23223adant2 1011 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  y
)  e.  ZZ )
2416, 23zsubcld 9339 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( ( P  pCnt  x )  -  ( P 
pCnt  y ) )  e.  ZZ )
2513, 24eqeltrd 2247 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
x  /  y ) )  e.  ZZ )
26253expb 1199 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  (
( x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN ) )  ->  ( P  pCnt  ( x  / 
y ) )  e.  ZZ )
2712, 26sylan2b 285 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  (
( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
) )  ->  ( P  pCnt  ( x  / 
y ) )  e.  ZZ )
2827expr 373 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( x  =/=  0  ->  ( P 
pCnt  ( x  / 
y ) )  e.  ZZ ) )
2911, 28syld 45 . . . . . . 7  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( (
x  /  y )  =/=  0  ->  ( P  pCnt  ( x  / 
y ) )  e.  ZZ ) )
30 neeq1 2353 . . . . . . . 8  |-  ( N  =  ( x  / 
y )  ->  ( N  =/=  0  <->  ( x  /  y )  =/=  0 ) )
31 oveq2 5861 . . . . . . . . 9  |-  ( N  =  ( x  / 
y )  ->  ( P  pCnt  N )  =  ( P  pCnt  (
x  /  y ) ) )
3231eleq1d 2239 . . . . . . . 8  |-  ( N  =  ( x  / 
y )  ->  (
( P  pCnt  N
)  e.  ZZ  <->  ( P  pCnt  ( x  /  y
) )  e.  ZZ ) )
3330, 32imbi12d 233 . . . . . . 7  |-  ( N  =  ( x  / 
y )  ->  (
( N  =/=  0  ->  ( P  pCnt  N
)  e.  ZZ )  <-> 
( ( x  / 
y )  =/=  0  ->  ( P  pCnt  (
x  /  y ) )  e.  ZZ ) ) )
3429, 33syl5ibrcom 156 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( N  =  ( x  / 
y )  ->  ( N  =/=  0  ->  ( P  pCnt  N )  e.  ZZ ) ) )
3534com23 78 . . . . 5  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( N  =/=  0  ->  ( N  =  ( x  / 
y )  ->  ( P  pCnt  N )  e.  ZZ ) ) )
3635impancom 258 . . . 4  |-  ( ( P  e.  Prime  /\  N  =/=  0 )  ->  (
( x  e.  ZZ  /\  y  e.  NN )  ->  ( N  =  ( x  /  y
)  ->  ( P  pCnt  N )  e.  ZZ ) ) )
3736adantrl 475 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( N  =  ( x  /  y )  -> 
( P  pCnt  N
)  e.  ZZ ) ) )
3837rexlimdvv 2594 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  /  y )  ->  ( P  pCnt  N )  e.  ZZ ) )
393, 38mpd 13 1  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   E.wrex 2449  (class class class)co 5853   0cc0 7774    - cmin 8090    / cdiv 8589   NNcn 8878   ZZcz 9212   QQcq 9578   Primecprime 12061    pCnt cpc 12238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-pc 12239
This theorem is referenced by:  pcqdiv  12261  pcexp  12263  pcxcl  12265  pcadd  12293  qexpz  12304  expnprm  12305
  Copyright terms: Public domain W3C validator