ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o6 Unicode version

Theorem dff1o6 5868
Description: A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008.)
Assertion
Ref Expression
dff1o6  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A   
x, F, y
Allowed substitution hints:    B( x, y)

Proof of Theorem dff1o6
StepHypRef Expression
1 df-f1o 5297 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 dff13 5860 . . 3  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
3 df-fo 5296 . . 3  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
42, 3anbi12i 460 . 2  |-  ( ( F : A -1-1-> B  /\  F : A -onto-> B
)  <->  ( ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )
5 df-3an 983 . . 3  |-  ( ( F  Fn  A  /\  ran  F  =  B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  <->  ( ( F  Fn  A  /\  ran  F  =  B )  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
6 eqimss 3255 . . . . . . 7  |-  ( ran 
F  =  B  ->  ran  F  C_  B )
76anim2i 342 . . . . . 6  |-  ( ( F  Fn  A  /\  ran  F  =  B )  ->  ( F  Fn  A  /\  ran  F  C_  B ) )
8 df-f 5294 . . . . . 6  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
97, 8sylibr 134 . . . . 5  |-  ( ( F  Fn  A  /\  ran  F  =  B )  ->  F : A --> B )
109pm4.71ri 392 . . . 4  |-  ( ( F  Fn  A  /\  ran  F  =  B )  <-> 
( F : A --> B  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )
1110anbi1i 458 . . 3  |-  ( ( ( F  Fn  A  /\  ran  F  =  B )  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )  <-> 
( ( F : A
--> B  /\  ( F  Fn  A  /\  ran  F  =  B ) )  /\  A. x  e.  A  A. y  e.  A  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y ) ) )
12 an32 562 . . 3  |-  ( ( ( F : A --> B  /\  ( F  Fn  A  /\  ran  F  =  B ) )  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  <->  ( ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )
135, 11, 123bitrri 207 . 2  |-  ( ( ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y ) )  /\  ( F  Fn  A  /\  ran  F  =  B ) )  <->  ( F  Fn  A  /\  ran  F  =  B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
141, 4, 133bitri 206 1  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B  /\  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   A.wral 2486    C_ wss 3174   ran crn 4694    Fn wfn 5285   -->wf 5286   -1-1->wf1 5287   -onto->wfo 5288   -1-1-onto->wf1o 5289   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298
This theorem is referenced by:  ennnfonelemim  12910
  Copyright terms: Public domain W3C validator