ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resco Unicode version

Theorem resco 5196
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resco  |-  ( ( A  o.  B )  |`  C )  =  ( A  o.  ( B  |`  C ) )

Proof of Theorem resco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4996 . 2  |-  Rel  (
( A  o.  B
)  |`  C )
2 relco 5190 . 2  |-  Rel  ( A  o.  ( B  |`  C ) )
3 vex 2776 . . . . . 6  |-  x  e. 
_V
4 vex 2776 . . . . . 6  |-  y  e. 
_V
53, 4brco 4857 . . . . 5  |-  ( x ( A  o.  B
) y  <->  E. z
( x B z  /\  z A y ) )
65anbi1i 458 . . . 4  |-  ( ( x ( A  o.  B ) y  /\  x  e.  C )  <->  ( E. z ( x B z  /\  z A y )  /\  x  e.  C )
)
7 19.41v 1927 . . . 4  |-  ( E. z ( ( x B z  /\  z A y )  /\  x  e.  C )  <->  ( E. z ( x B z  /\  z A y )  /\  x  e.  C )
)
8 an32 562 . . . . . 6  |-  ( ( ( x B z  /\  z A y )  /\  x  e.  C )  <->  ( (
x B z  /\  x  e.  C )  /\  z A y ) )
9 vex 2776 . . . . . . . 8  |-  z  e. 
_V
109brres 4974 . . . . . . 7  |-  ( x ( B  |`  C ) z  <->  ( x B z  /\  x  e.  C ) )
1110anbi1i 458 . . . . . 6  |-  ( ( x ( B  |`  C ) z  /\  z A y )  <->  ( (
x B z  /\  x  e.  C )  /\  z A y ) )
128, 11bitr4i 187 . . . . 5  |-  ( ( ( x B z  /\  z A y )  /\  x  e.  C )  <->  ( x
( B  |`  C ) z  /\  z A y ) )
1312exbii 1629 . . . 4  |-  ( E. z ( ( x B z  /\  z A y )  /\  x  e.  C )  <->  E. z ( x ( B  |`  C )
z  /\  z A
y ) )
146, 7, 133bitr2i 208 . . 3  |-  ( ( x ( A  o.  B ) y  /\  x  e.  C )  <->  E. z ( x ( B  |`  C )
z  /\  z A
y ) )
154brres 4974 . . 3  |-  ( x ( ( A  o.  B )  |`  C ) y  <->  ( x ( A  o.  B ) y  /\  x  e.  C ) )
163, 4brco 4857 . . 3  |-  ( x ( A  o.  ( B  |`  C ) ) y  <->  E. z ( x ( B  |`  C ) z  /\  z A y ) )
1714, 15, 163bitr4i 212 . 2  |-  ( x ( ( A  o.  B )  |`  C ) y  <->  x ( A  o.  ( B  |`  C ) ) y )
181, 2, 17eqbrriv 4778 1  |-  ( ( A  o.  B )  |`  C )  =  ( A  o.  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177   class class class wbr 4051    |` cres 4685    o. ccom 4687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-co 4692  df-res 4695
This theorem is referenced by:  cocnvcnv2  5203  coires1  5209  relcoi1  5223  dftpos2  6360
  Copyright terms: Public domain W3C validator