ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resco Unicode version

Theorem resco 5108
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
resco  |-  ( ( A  o.  B )  |`  C )  =  ( A  o.  ( B  |`  C ) )

Proof of Theorem resco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4912 . 2  |-  Rel  (
( A  o.  B
)  |`  C )
2 relco 5102 . 2  |-  Rel  ( A  o.  ( B  |`  C ) )
3 vex 2729 . . . . . 6  |-  x  e. 
_V
4 vex 2729 . . . . . 6  |-  y  e. 
_V
53, 4brco 4775 . . . . 5  |-  ( x ( A  o.  B
) y  <->  E. z
( x B z  /\  z A y ) )
65anbi1i 454 . . . 4  |-  ( ( x ( A  o.  B ) y  /\  x  e.  C )  <->  ( E. z ( x B z  /\  z A y )  /\  x  e.  C )
)
7 19.41v 1890 . . . 4  |-  ( E. z ( ( x B z  /\  z A y )  /\  x  e.  C )  <->  ( E. z ( x B z  /\  z A y )  /\  x  e.  C )
)
8 an32 552 . . . . . 6  |-  ( ( ( x B z  /\  z A y )  /\  x  e.  C )  <->  ( (
x B z  /\  x  e.  C )  /\  z A y ) )
9 vex 2729 . . . . . . . 8  |-  z  e. 
_V
109brres 4890 . . . . . . 7  |-  ( x ( B  |`  C ) z  <->  ( x B z  /\  x  e.  C ) )
1110anbi1i 454 . . . . . 6  |-  ( ( x ( B  |`  C ) z  /\  z A y )  <->  ( (
x B z  /\  x  e.  C )  /\  z A y ) )
128, 11bitr4i 186 . . . . 5  |-  ( ( ( x B z  /\  z A y )  /\  x  e.  C )  <->  ( x
( B  |`  C ) z  /\  z A y ) )
1312exbii 1593 . . . 4  |-  ( E. z ( ( x B z  /\  z A y )  /\  x  e.  C )  <->  E. z ( x ( B  |`  C )
z  /\  z A
y ) )
146, 7, 133bitr2i 207 . . 3  |-  ( ( x ( A  o.  B ) y  /\  x  e.  C )  <->  E. z ( x ( B  |`  C )
z  /\  z A
y ) )
154brres 4890 . . 3  |-  ( x ( ( A  o.  B )  |`  C ) y  <->  ( x ( A  o.  B ) y  /\  x  e.  C ) )
163, 4brco 4775 . . 3  |-  ( x ( A  o.  ( B  |`  C ) ) y  <->  E. z ( x ( B  |`  C ) z  /\  z A y ) )
1714, 15, 163bitr4i 211 . 2  |-  ( x ( ( A  o.  B )  |`  C ) y  <->  x ( A  o.  ( B  |`  C ) ) y )
181, 2, 17eqbrriv 4699 1  |-  ( ( A  o.  B )  |`  C )  =  ( A  o.  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136   class class class wbr 3982    |` cres 4606    o. ccom 4608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-co 4613  df-res 4616
This theorem is referenced by:  cocnvcnv2  5115  coires1  5121  relcoi1  5135  dftpos2  6229
  Copyright terms: Public domain W3C validator