ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab GIF version

Theorem brab 4245
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.)
Hypotheses
Ref Expression
opelopab.1 𝐴 ∈ V
opelopab.2 𝐵 ∈ V
opelopab.3 (𝑥 = 𝐴 → (𝜑𝜓))
opelopab.4 (𝑦 = 𝐵 → (𝜓𝜒))
brab.5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
brab (𝐴𝑅𝐵𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brab
StepHypRef Expression
1 opelopab.1 . 2 𝐴 ∈ V
2 opelopab.2 . 2 𝐵 ∈ V
3 opelopab.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 opelopab.4 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
5 brab.5 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
63, 4, 5brabg 4242 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵𝜒))
71, 2, 6mp2an 423 1 (𝐴𝑅𝐵𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1342  wcel 2135  Vcvv 2722   class class class wbr 3977  {copab 4037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2724  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-br 3978  df-opab 4039
This theorem is referenced by:  dftpos4  6223  enq0sym  7365  enq0ref  7366  enq0tr  7367  shftfn  10756
  Copyright terms: Public domain W3C validator