ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfn Unicode version

Theorem shftfn 10551
Description: Functionality and domain of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftfn  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
Distinct variable groups:    x, A    x, F    x, B

Proof of Theorem shftfn
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4636 . . . . 5  |-  Rel  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
21a1i 9 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Rel  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
3 fnfun 5190 . . . . . 6  |-  ( F  Fn  B  ->  Fun  F )
43adantr 274 . . . . 5  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  F )
5 funmo 5108 . . . . . . 7  |-  ( Fun 
F  ->  E* w
( z  -  A
) F w )
6 vex 2663 . . . . . . . . . 10  |-  z  e. 
_V
7 vex 2663 . . . . . . . . . 10  |-  w  e. 
_V
8 eleq1 2180 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x  e.  CC  <->  z  e.  CC ) )
9 oveq1 5749 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  -  A )  =  ( z  -  A ) )
109breq1d 3909 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( x  -  A
) F y  <->  ( z  -  A ) F y ) )
118, 10anbi12d 464 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  <-> 
( z  e.  CC  /\  ( z  -  A
) F y ) ) )
12 breq2 3903 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( z  -  A
) F y  <->  ( z  -  A ) F w ) )
1312anbi2d 459 . . . . . . . . . 10  |-  ( y  =  w  ->  (
( z  e.  CC  /\  ( z  -  A
) F y )  <-> 
( z  e.  CC  /\  ( z  -  A
) F w ) ) )
14 eqid 2117 . . . . . . . . . 10  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }
156, 7, 11, 13, 14brab 4164 . . . . . . . . 9  |-  ( z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w  <->  ( z  e.  CC  /\  ( z  -  A
) F w ) )
1615simprbi 273 . . . . . . . 8  |-  ( z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w  ->  ( z  -  A
) F w )
1716moimi 2042 . . . . . . 7  |-  ( E* w ( z  -  A ) F w  ->  E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
185, 17syl 14 . . . . . 6  |-  ( Fun 
F  ->  E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
1918alrimiv 1830 . . . . 5  |-  ( Fun 
F  ->  A. z E* w  z { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
204, 19syl 14 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  A. z E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
21 dffun6 5107 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  <->  ( Rel  {
<. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  /\  A. z E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
) )
222, 20, 21sylanbrc 413 . . 3  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
23 shftfval.1 . . . . . 6  |-  F  e. 
_V
2423shftfval 10548 . . . . 5  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
2524adantl 275 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
2625funeqd 5115 . . 3  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( Fun  ( F 
shift  A )  <->  Fun  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } ) )
2722, 26mpbird 166 . 2  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  ( F  shift  A ) )
2823shftdm 10549 . . 3  |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e. 
dom  F } )
29 fndm 5192 . . . . 5  |-  ( F  Fn  B  ->  dom  F  =  B )
3029eleq2d 2187 . . . 4  |-  ( F  Fn  B  ->  (
( x  -  A
)  e.  dom  F  <->  ( x  -  A )  e.  B ) )
3130rabbidv 2649 . . 3  |-  ( F  Fn  B  ->  { x  e.  CC  |  ( x  -  A )  e. 
dom  F }  =  { x  e.  CC  |  ( x  -  A )  e.  B } )
3228, 31sylan9eqr 2172 . 2  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  B } )
33 df-fn 5096 . 2  |-  ( ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } 
<->  ( Fun  ( F 
shift  A )  /\  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  B } ) )
3427, 32, 33sylanbrc 413 1  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1314    = wceq 1316    e. wcel 1465   E*wmo 1978   {crab 2397   _Vcvv 2660   class class class wbr 3899   {copab 3958   dom cdm 4509   Rel wrel 4514   Fun wfun 5087    Fn wfn 5088  (class class class)co 5742   CCcc 7586    - cmin 7901    shift cshi 10541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-resscn 7680  ax-1cn 7681  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-sub 7903  df-shft 10542
This theorem is referenced by:  shftf  10557  seq3shft  10565
  Copyright terms: Public domain W3C validator