ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfn Unicode version

Theorem shftfn 10766
Description: Functionality and domain of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftfn  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
Distinct variable groups:    x, A    x, F    x, B

Proof of Theorem shftfn
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4731 . . . . 5  |-  Rel  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
21a1i 9 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Rel  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
3 fnfun 5285 . . . . . 6  |-  ( F  Fn  B  ->  Fun  F )
43adantr 274 . . . . 5  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  F )
5 funmo 5203 . . . . . . 7  |-  ( Fun 
F  ->  E* w
( z  -  A
) F w )
6 vex 2729 . . . . . . . . . 10  |-  z  e. 
_V
7 vex 2729 . . . . . . . . . 10  |-  w  e. 
_V
8 eleq1 2229 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x  e.  CC  <->  z  e.  CC ) )
9 oveq1 5849 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  -  A )  =  ( z  -  A ) )
109breq1d 3992 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( x  -  A
) F y  <->  ( z  -  A ) F y ) )
118, 10anbi12d 465 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  <-> 
( z  e.  CC  /\  ( z  -  A
) F y ) ) )
12 breq2 3986 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( z  -  A
) F y  <->  ( z  -  A ) F w ) )
1312anbi2d 460 . . . . . . . . . 10  |-  ( y  =  w  ->  (
( z  e.  CC  /\  ( z  -  A
) F y )  <-> 
( z  e.  CC  /\  ( z  -  A
) F w ) ) )
14 eqid 2165 . . . . . . . . . 10  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }
156, 7, 11, 13, 14brab 4250 . . . . . . . . 9  |-  ( z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w  <->  ( z  e.  CC  /\  ( z  -  A
) F w ) )
1615simprbi 273 . . . . . . . 8  |-  ( z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w  ->  ( z  -  A
) F w )
1716moimi 2079 . . . . . . 7  |-  ( E* w ( z  -  A ) F w  ->  E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
185, 17syl 14 . . . . . 6  |-  ( Fun 
F  ->  E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
1918alrimiv 1862 . . . . 5  |-  ( Fun 
F  ->  A. z E* w  z { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
204, 19syl 14 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  A. z E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
21 dffun6 5202 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  <->  ( Rel  {
<. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  /\  A. z E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
) )
222, 20, 21sylanbrc 414 . . 3  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
23 shftfval.1 . . . . . 6  |-  F  e. 
_V
2423shftfval 10763 . . . . 5  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
2524adantl 275 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
2625funeqd 5210 . . 3  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( Fun  ( F 
shift  A )  <->  Fun  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } ) )
2722, 26mpbird 166 . 2  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  ( F  shift  A ) )
2823shftdm 10764 . . 3  |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e. 
dom  F } )
29 fndm 5287 . . . . 5  |-  ( F  Fn  B  ->  dom  F  =  B )
3029eleq2d 2236 . . . 4  |-  ( F  Fn  B  ->  (
( x  -  A
)  e.  dom  F  <->  ( x  -  A )  e.  B ) )
3130rabbidv 2715 . . 3  |-  ( F  Fn  B  ->  { x  e.  CC  |  ( x  -  A )  e. 
dom  F }  =  { x  e.  CC  |  ( x  -  A )  e.  B } )
3228, 31sylan9eqr 2221 . 2  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  B } )
33 df-fn 5191 . 2  |-  ( ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } 
<->  ( Fun  ( F 
shift  A )  /\  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  B } ) )
3427, 32, 33sylanbrc 414 1  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343   E*wmo 2015    e. wcel 2136   {crab 2448   _Vcvv 2726   class class class wbr 3982   {copab 4042   dom cdm 4604   Rel wrel 4609   Fun wfun 5182    Fn wfn 5183  (class class class)co 5842   CCcc 7751    - cmin 8069    shift cshi 10756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-shft 10757
This theorem is referenced by:  shftf  10772  seq3shft  10780
  Copyright terms: Public domain W3C validator