Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > shftfn | Unicode version |
Description: Functionality and domain of a sequence shifted by . (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 |
Ref | Expression |
---|---|
shftfn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 4738 | . . . . 5 | |
2 | 1 | a1i 9 | . . . 4 |
3 | fnfun 5295 | . . . . . 6 | |
4 | 3 | adantr 274 | . . . . 5 |
5 | funmo 5213 | . . . . . . 7 | |
6 | vex 2733 | . . . . . . . . . 10 | |
7 | vex 2733 | . . . . . . . . . 10 | |
8 | eleq1 2233 | . . . . . . . . . . 11 | |
9 | oveq1 5860 | . . . . . . . . . . . 12 | |
10 | 9 | breq1d 3999 | . . . . . . . . . . 11 |
11 | 8, 10 | anbi12d 470 | . . . . . . . . . 10 |
12 | breq2 3993 | . . . . . . . . . . 11 | |
13 | 12 | anbi2d 461 | . . . . . . . . . 10 |
14 | eqid 2170 | . . . . . . . . . 10 | |
15 | 6, 7, 11, 13, 14 | brab 4257 | . . . . . . . . 9 |
16 | 15 | simprbi 273 | . . . . . . . 8 |
17 | 16 | moimi 2084 | . . . . . . 7 |
18 | 5, 17 | syl 14 | . . . . . 6 |
19 | 18 | alrimiv 1867 | . . . . 5 |
20 | 4, 19 | syl 14 | . . . 4 |
21 | dffun6 5212 | . . . 4 | |
22 | 2, 20, 21 | sylanbrc 415 | . . 3 |
23 | shftfval.1 | . . . . . 6 | |
24 | 23 | shftfval 10785 | . . . . 5 |
25 | 24 | adantl 275 | . . . 4 |
26 | 25 | funeqd 5220 | . . 3 |
27 | 22, 26 | mpbird 166 | . 2 |
28 | 23 | shftdm 10786 | . . 3 |
29 | fndm 5297 | . . . . 5 | |
30 | 29 | eleq2d 2240 | . . . 4 |
31 | 30 | rabbidv 2719 | . . 3 |
32 | 28, 31 | sylan9eqr 2225 | . 2 |
33 | df-fn 5201 | . 2 | |
34 | 27, 32, 33 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wmo 2020 wcel 2141 crab 2452 cvv 2730 class class class wbr 3989 copab 4049 cdm 4611 wrel 4616 wfun 5192 wfn 5193 (class class class)co 5853 cc 7772 cmin 8090 cshi 10778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-shft 10779 |
This theorem is referenced by: shftf 10794 seq3shft 10802 |
Copyright terms: Public domain | W3C validator |