ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfn Unicode version

Theorem shftfn 10989
Description: Functionality and domain of a sequence shifted by  A. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftfn  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
Distinct variable groups:    x, A    x, F    x, B

Proof of Theorem shftfn
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4792 . . . . 5  |-  Rel  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }
21a1i 9 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Rel  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
3 fnfun 5355 . . . . . 6  |-  ( F  Fn  B  ->  Fun  F )
43adantr 276 . . . . 5  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  F )
5 funmo 5273 . . . . . . 7  |-  ( Fun 
F  ->  E* w
( z  -  A
) F w )
6 vex 2766 . . . . . . . . . 10  |-  z  e. 
_V
7 vex 2766 . . . . . . . . . 10  |-  w  e. 
_V
8 eleq1 2259 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
x  e.  CC  <->  z  e.  CC ) )
9 oveq1 5929 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x  -  A )  =  ( z  -  A ) )
109breq1d 4043 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( x  -  A
) F y  <->  ( z  -  A ) F y ) )
118, 10anbi12d 473 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  <-> 
( z  e.  CC  /\  ( z  -  A
) F y ) ) )
12 breq2 4037 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( z  -  A
) F y  <->  ( z  -  A ) F w ) )
1312anbi2d 464 . . . . . . . . . 10  |-  ( y  =  w  ->  (
( z  e.  CC  /\  ( z  -  A
) F y )  <-> 
( z  e.  CC  /\  ( z  -  A
) F w ) ) )
14 eqid 2196 . . . . . . . . . 10  |-  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }
156, 7, 11, 13, 14brab 4307 . . . . . . . . 9  |-  ( z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w  <->  ( z  e.  CC  /\  ( z  -  A
) F w ) )
1615simprbi 275 . . . . . . . 8  |-  ( z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w  ->  ( z  -  A
) F w )
1716moimi 2110 . . . . . . 7  |-  ( E* w ( z  -  A ) F w  ->  E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
185, 17syl 14 . . . . . 6  |-  ( Fun 
F  ->  E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
1918alrimiv 1888 . . . . 5  |-  ( Fun 
F  ->  A. z E* w  z { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
204, 19syl 14 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  A. z E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
)
21 dffun6 5272 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  <->  ( Rel  {
<. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  /\  A. z E* w  z { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } w
) )
222, 20, 21sylanbrc 417 . . 3  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
23 shftfval.1 . . . . . 6  |-  F  e. 
_V
2423shftfval 10986 . . . . 5  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
2524adantl 277 . . . 4  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
2625funeqd 5280 . . 3  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( Fun  ( F 
shift  A )  <->  Fun  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } ) )
2722, 26mpbird 167 . 2  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  Fun  ( F  shift  A ) )
2823shftdm 10987 . . 3  |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e. 
dom  F } )
29 fndm 5357 . . . . 5  |-  ( F  Fn  B  ->  dom  F  =  B )
3029eleq2d 2266 . . . 4  |-  ( F  Fn  B  ->  (
( x  -  A
)  e.  dom  F  <->  ( x  -  A )  e.  B ) )
3130rabbidv 2752 . . 3  |-  ( F  Fn  B  ->  { x  e.  CC  |  ( x  -  A )  e. 
dom  F }  =  { x  e.  CC  |  ( x  -  A )  e.  B } )
3228, 31sylan9eqr 2251 . 2  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  B } )
33 df-fn 5261 . 2  |-  ( ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } 
<->  ( Fun  ( F 
shift  A )  /\  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e.  B } ) )
3427, 32, 33sylanbrc 417 1  |-  ( ( F  Fn  B  /\  A  e.  CC )  ->  ( F  shift  A )  Fn  { x  e.  CC  |  ( x  -  A )  e.  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   E*wmo 2046    e. wcel 2167   {crab 2479   _Vcvv 2763   class class class wbr 4033   {copab 4093   dom cdm 4663   Rel wrel 4668   Fun wfun 5252    Fn wfn 5253  (class class class)co 5922   CCcc 7877    - cmin 8197    shift cshi 10979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199  df-shft 10980
This theorem is referenced by:  shftf  10995  seq3shft  11003
  Copyright terms: Public domain W3C validator