ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp3 Unicode version

Theorem elxp3 4674
Description: Membership in a cross product. (Contributed by NM, 5-Mar-1995.)
Assertion
Ref Expression
elxp3  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( <. x ,  y >.  =  A  /\  <. x ,  y
>.  e.  ( B  X.  C ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elxp3
StepHypRef Expression
1 elxp 4637 . 2  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
2 eqcom 2177 . . . 4  |-  ( <.
x ,  y >.  =  A  <->  A  =  <. x ,  y >. )
3 opelxp 4650 . . . 4  |-  ( <.
x ,  y >.  e.  ( B  X.  C
)  <->  ( x  e.  B  /\  y  e.  C ) )
42, 3anbi12i 460 . . 3  |-  ( (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  <->  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
542exbii 1604 . 2  |-  ( E. x E. y (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
61, 5bitr4i 187 1  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( <. x ,  y >.  =  A  /\  <. x ,  y
>.  e.  ( B  X.  C ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1490    e. wcel 2146   <.cop 3592    X. cxp 4618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-opab 4060  df-xp 4626
This theorem is referenced by:  optocl  4696
  Copyright terms: Public domain W3C validator