ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp3 Unicode version

Theorem elxp3 4665
Description: Membership in a cross product. (Contributed by NM, 5-Mar-1995.)
Assertion
Ref Expression
elxp3  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( <. x ,  y >.  =  A  /\  <. x ,  y
>.  e.  ( B  X.  C ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elxp3
StepHypRef Expression
1 elxp 4628 . 2  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
2 eqcom 2172 . . . 4  |-  ( <.
x ,  y >.  =  A  <->  A  =  <. x ,  y >. )
3 opelxp 4641 . . . 4  |-  ( <.
x ,  y >.  e.  ( B  X.  C
)  <->  ( x  e.  B  /\  y  e.  C ) )
42, 3anbi12i 457 . . 3  |-  ( (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  <->  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
542exbii 1599 . 2  |-  ( E. x E. y (
<. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) )  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
61, 5bitr4i 186 1  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( <. x ,  y >.  =  A  /\  <. x ,  y
>.  e.  ( B  X.  C ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   <.cop 3586    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617
This theorem is referenced by:  optocl  4687
  Copyright terms: Public domain W3C validator