ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfval Unicode version

Theorem shftfval 10544
Description: The value of the sequence shifter operation is a function on 
CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftfval  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
Distinct variable groups:    x, y, A   
x, F, y

Proof of Theorem shftfval
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 502 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  e.  CC )
2 simpll 501 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  A  e.  CC )
31, 2subcld 8037 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  -  A )  e.  CC )
4 vex 2661 . . . . . . . . . . 11  |-  y  e. 
_V
5 breldmg 4713 . . . . . . . . . . 11  |-  ( ( ( x  -  A
)  e.  CC  /\  y  e.  _V  /\  (
x  -  A ) F y )  -> 
( x  -  A
)  e.  dom  F
)
64, 5mp3an2 1286 . . . . . . . . . 10  |-  ( ( ( x  -  A
)  e.  CC  /\  ( x  -  A
) F y )  ->  ( x  -  A )  e.  dom  F )
73, 6sylancom 414 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  -  A )  e.  dom  F )
8 npcan 7935 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
98eqcomd 2121 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
109ancoms 266 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
1110adantr 272 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  =  ( ( x  -  A )  +  A
) )
12 oveq1 5747 . . . . . . . . . . 11  |-  ( w  =  ( x  -  A )  ->  (
w  +  A )  =  ( ( x  -  A )  +  A ) )
1312eqeq2d 2127 . . . . . . . . . 10  |-  ( w  =  ( x  -  A )  ->  (
x  =  ( w  +  A )  <->  x  =  ( ( x  -  A )  +  A
) ) )
1413rspcev 2761 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  dom  F  /\  x  =  (
( x  -  A
)  +  A ) )  ->  E. w  e.  dom  F  x  =  ( w  +  A
) )
157, 11, 14syl2anc 406 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  E. w  e.  dom  F  x  =  ( w  +  A
) )
16 vex 2661 . . . . . . . . 9  |-  x  e. 
_V
17 eqeq1 2122 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  =  ( w  +  A )  <->  x  =  ( w  +  A
) ) )
1817rexbidv 2413 . . . . . . . . 9  |-  ( z  =  x  ->  ( E. w  e.  dom  F  z  =  ( w  +  A )  <->  E. w  e.  dom  F  x  =  ( w  +  A
) ) )
1916, 18elab 2800 . . . . . . . 8  |-  ( x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  <->  E. w  e.  dom  F  x  =  ( w  +  A ) )
2015, 19sylibr 133 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) } )
21 brelrng 4738 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  CC  /\  y  e.  _V  /\  (
x  -  A ) F y )  -> 
y  e.  ran  F
)
224, 21mp3an2 1286 . . . . . . . 8  |-  ( ( ( x  -  A
)  e.  CC  /\  ( x  -  A
) F y )  ->  y  e.  ran  F )
233, 22sylancom 414 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  y  e.  ran  F )
2420, 23jca 302 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  /\  y  e.  ran  F ) )
2524expl 373 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  ->  ( x  e. 
{ z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  /\  y  e.  ran  F ) ) )
2625ssopab2dv 4168 . . . 4  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  C_  { <. x ,  y >.  |  ( x  e.  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  /\  y  e.  ran  F ) } )
27 df-xp 4513 . . . 4  |-  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F )  =  { <. x ,  y >.  |  ( x  e.  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  /\  y  e.  ran  F ) }
2826, 27sseqtrrdi 3114 . . 3  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  C_  ( {
z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F ) )
29 shftfval.1 . . . . . 6  |-  F  e. 
_V
3029dmex 4773 . . . . 5  |-  dom  F  e.  _V
3130abrexex 5981 . . . 4  |-  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  e.  _V
3229rnex 4774 . . . 4  |-  ran  F  e.  _V
3331, 32xpex 4622 . . 3  |-  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F )  e.  _V
34 ssexg 4035 . . 3  |-  ( ( { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  C_  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  /\  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  e.  _V )  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  e.  _V )
3528, 33, 34sylancl 407 . 2  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  e.  _V )
36 breq 3899 . . . . . 6  |-  ( z  =  F  ->  (
( x  -  w
) z y  <->  ( x  -  w ) F y ) )
3736anbi2d 457 . . . . 5  |-  ( z  =  F  ->  (
( x  e.  CC  /\  ( x  -  w
) z y )  <-> 
( x  e.  CC  /\  ( x  -  w
) F y ) ) )
3837opabbidv 3962 . . . 4  |-  ( z  =  F  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) z y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) F y ) } )
39 oveq2 5748 . . . . . . 7  |-  ( w  =  A  ->  (
x  -  w )  =  ( x  -  A ) )
4039breq1d 3907 . . . . . 6  |-  ( w  =  A  ->  (
( x  -  w
) F y  <->  ( x  -  A ) F y ) )
4140anbi2d 457 . . . . 5  |-  ( w  =  A  ->  (
( x  e.  CC  /\  ( x  -  w
) F y )  <-> 
( x  e.  CC  /\  ( x  -  A
) F y ) ) )
4241opabbidv 3962 . . . 4  |-  ( w  =  A  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
43 df-shft 10538 . . . 4  |-  shift  =  ( z  e.  _V ,  w  e.  CC  |->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) z y ) } )
4438, 42, 43ovmpog 5871 . . 3  |-  ( ( F  e.  _V  /\  A  e.  CC  /\  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  e.  _V )  ->  ( F 
shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
4529, 44mp3an1 1285 . 2  |-  ( ( A  e.  CC  /\  {
<. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  e.  _V )  ->  ( F 
shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
4635, 45mpdan 415 1  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   {cab 2101   E.wrex 2392   _Vcvv 2658    C_ wss 3039   class class class wbr 3897   {copab 3956    X. cxp 4505   dom cdm 4507   ran crn 4508  (class class class)co 5740   CCcc 7582    + caddc 7587    - cmin 7897    shift cshi 10537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-resscn 7676  ax-1cn 7677  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-sub 7899  df-shft 10538
This theorem is referenced by:  shftdm  10545  shftfib  10546  shftfn  10547  2shfti  10554  shftidt2  10555
  Copyright terms: Public domain W3C validator