| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > shftfval | Unicode version | ||
| Description: The value of the sequence
shifter operation is a function on |
| Ref | Expression |
|---|---|
| shftfval.1 |
|
| Ref | Expression |
|---|---|
| shftfval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 528 |
. . . . . . . . . . 11
| |
| 2 | simpll 527 |
. . . . . . . . . . 11
| |
| 3 | 1, 2 | subcld 8453 |
. . . . . . . . . 10
|
| 4 | vex 2802 |
. . . . . . . . . . 11
| |
| 5 | breldmg 4928 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | mp3an2 1359 |
. . . . . . . . . 10
|
| 7 | 3, 6 | sylancom 420 |
. . . . . . . . 9
|
| 8 | npcan 8351 |
. . . . . . . . . . . 12
| |
| 9 | 8 | eqcomd 2235 |
. . . . . . . . . . 11
|
| 10 | 9 | ancoms 268 |
. . . . . . . . . 10
|
| 11 | 10 | adantr 276 |
. . . . . . . . 9
|
| 12 | oveq1 6007 |
. . . . . . . . . . 11
| |
| 13 | 12 | eqeq2d 2241 |
. . . . . . . . . 10
|
| 14 | 13 | rspcev 2907 |
. . . . . . . . 9
|
| 15 | 7, 11, 14 | syl2anc 411 |
. . . . . . . 8
|
| 16 | vex 2802 |
. . . . . . . . 9
| |
| 17 | eqeq1 2236 |
. . . . . . . . . 10
| |
| 18 | 17 | rexbidv 2531 |
. . . . . . . . 9
|
| 19 | 16, 18 | elab 2947 |
. . . . . . . 8
|
| 20 | 15, 19 | sylibr 134 |
. . . . . . 7
|
| 21 | brelrng 4954 |
. . . . . . . . 9
| |
| 22 | 4, 21 | mp3an2 1359 |
. . . . . . . 8
|
| 23 | 3, 22 | sylancom 420 |
. . . . . . 7
|
| 24 | 20, 23 | jca 306 |
. . . . . 6
|
| 25 | 24 | expl 378 |
. . . . 5
|
| 26 | 25 | ssopab2dv 4366 |
. . . 4
|
| 27 | df-xp 4724 |
. . . 4
| |
| 28 | 26, 27 | sseqtrrdi 3273 |
. . 3
|
| 29 | shftfval.1 |
. . . . . 6
| |
| 30 | 29 | dmex 4990 |
. . . . 5
|
| 31 | 30 | abrexex 6260 |
. . . 4
|
| 32 | 29 | rnex 4991 |
. . . 4
|
| 33 | 31, 32 | xpex 4833 |
. . 3
|
| 34 | ssexg 4222 |
. . 3
| |
| 35 | 28, 33, 34 | sylancl 413 |
. 2
|
| 36 | breq 4084 |
. . . . . 6
| |
| 37 | 36 | anbi2d 464 |
. . . . 5
|
| 38 | 37 | opabbidv 4149 |
. . . 4
|
| 39 | oveq2 6008 |
. . . . . . 7
| |
| 40 | 39 | breq1d 4092 |
. . . . . 6
|
| 41 | 40 | anbi2d 464 |
. . . . 5
|
| 42 | 41 | opabbidv 4149 |
. . . 4
|
| 43 | df-shft 11321 |
. . . 4
| |
| 44 | 38, 42, 43 | ovmpog 6138 |
. . 3
|
| 45 | 29, 44 | mp3an1 1358 |
. 2
|
| 46 | 35, 45 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-shft 11321 |
| This theorem is referenced by: shftdm 11328 shftfib 11329 shftfn 11330 2shfti 11337 shftidt2 11338 |
| Copyright terms: Public domain | W3C validator |