Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > shftfval | Unicode version |
Description: The value of the sequence shifter operation is a function on . is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 |
Ref | Expression |
---|---|
shftfval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 525 | . . . . . . . . . . 11 | |
2 | simpll 524 | . . . . . . . . . . 11 | |
3 | 1, 2 | subcld 8230 | . . . . . . . . . 10 |
4 | vex 2733 | . . . . . . . . . . 11 | |
5 | breldmg 4817 | . . . . . . . . . . 11 | |
6 | 4, 5 | mp3an2 1320 | . . . . . . . . . 10 |
7 | 3, 6 | sylancom 418 | . . . . . . . . 9 |
8 | npcan 8128 | . . . . . . . . . . . 12 | |
9 | 8 | eqcomd 2176 | . . . . . . . . . . 11 |
10 | 9 | ancoms 266 | . . . . . . . . . 10 |
11 | 10 | adantr 274 | . . . . . . . . 9 |
12 | oveq1 5860 | . . . . . . . . . . 11 | |
13 | 12 | eqeq2d 2182 | . . . . . . . . . 10 |
14 | 13 | rspcev 2834 | . . . . . . . . 9 |
15 | 7, 11, 14 | syl2anc 409 | . . . . . . . 8 |
16 | vex 2733 | . . . . . . . . 9 | |
17 | eqeq1 2177 | . . . . . . . . . 10 | |
18 | 17 | rexbidv 2471 | . . . . . . . . 9 |
19 | 16, 18 | elab 2874 | . . . . . . . 8 |
20 | 15, 19 | sylibr 133 | . . . . . . 7 |
21 | brelrng 4842 | . . . . . . . . 9 | |
22 | 4, 21 | mp3an2 1320 | . . . . . . . 8 |
23 | 3, 22 | sylancom 418 | . . . . . . 7 |
24 | 20, 23 | jca 304 | . . . . . 6 |
25 | 24 | expl 376 | . . . . 5 |
26 | 25 | ssopab2dv 4263 | . . . 4 |
27 | df-xp 4617 | . . . 4 | |
28 | 26, 27 | sseqtrrdi 3196 | . . 3 |
29 | shftfval.1 | . . . . . 6 | |
30 | 29 | dmex 4877 | . . . . 5 |
31 | 30 | abrexex 6096 | . . . 4 |
32 | 29 | rnex 4878 | . . . 4 |
33 | 31, 32 | xpex 4726 | . . 3 |
34 | ssexg 4128 | . . 3 | |
35 | 28, 33, 34 | sylancl 411 | . 2 |
36 | breq 3991 | . . . . . 6 | |
37 | 36 | anbi2d 461 | . . . . 5 |
38 | 37 | opabbidv 4055 | . . . 4 |
39 | oveq2 5861 | . . . . . . 7 | |
40 | 39 | breq1d 3999 | . . . . . 6 |
41 | 40 | anbi2d 461 | . . . . 5 |
42 | 41 | opabbidv 4055 | . . . 4 |
43 | df-shft 10779 | . . . 4 | |
44 | 38, 42, 43 | ovmpog 5987 | . . 3 |
45 | 29, 44 | mp3an1 1319 | . 2 |
46 | 35, 45 | mpdan 419 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cab 2156 wrex 2449 cvv 2730 wss 3121 class class class wbr 3989 copab 4049 cxp 4609 cdm 4611 crn 4612 (class class class)co 5853 cc 7772 caddc 7777 cmin 8090 cshi 10778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-shft 10779 |
This theorem is referenced by: shftdm 10786 shftfib 10787 shftfn 10788 2shfti 10795 shftidt2 10796 |
Copyright terms: Public domain | W3C validator |