Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > shftfval | Unicode version |
Description: The value of the sequence shifter operation is a function on . is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 |
Ref | Expression |
---|---|
shftfval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 520 | . . . . . . . . . . 11 | |
2 | simpll 519 | . . . . . . . . . . 11 | |
3 | 1, 2 | subcld 8209 | . . . . . . . . . 10 |
4 | vex 2729 | . . . . . . . . . . 11 | |
5 | breldmg 4810 | . . . . . . . . . . 11 | |
6 | 4, 5 | mp3an2 1315 | . . . . . . . . . 10 |
7 | 3, 6 | sylancom 417 | . . . . . . . . 9 |
8 | npcan 8107 | . . . . . . . . . . . 12 | |
9 | 8 | eqcomd 2171 | . . . . . . . . . . 11 |
10 | 9 | ancoms 266 | . . . . . . . . . 10 |
11 | 10 | adantr 274 | . . . . . . . . 9 |
12 | oveq1 5849 | . . . . . . . . . . 11 | |
13 | 12 | eqeq2d 2177 | . . . . . . . . . 10 |
14 | 13 | rspcev 2830 | . . . . . . . . 9 |
15 | 7, 11, 14 | syl2anc 409 | . . . . . . . 8 |
16 | vex 2729 | . . . . . . . . 9 | |
17 | eqeq1 2172 | . . . . . . . . . 10 | |
18 | 17 | rexbidv 2467 | . . . . . . . . 9 |
19 | 16, 18 | elab 2870 | . . . . . . . 8 |
20 | 15, 19 | sylibr 133 | . . . . . . 7 |
21 | brelrng 4835 | . . . . . . . . 9 | |
22 | 4, 21 | mp3an2 1315 | . . . . . . . 8 |
23 | 3, 22 | sylancom 417 | . . . . . . 7 |
24 | 20, 23 | jca 304 | . . . . . 6 |
25 | 24 | expl 376 | . . . . 5 |
26 | 25 | ssopab2dv 4256 | . . . 4 |
27 | df-xp 4610 | . . . 4 | |
28 | 26, 27 | sseqtrrdi 3191 | . . 3 |
29 | shftfval.1 | . . . . . 6 | |
30 | 29 | dmex 4870 | . . . . 5 |
31 | 30 | abrexex 6085 | . . . 4 |
32 | 29 | rnex 4871 | . . . 4 |
33 | 31, 32 | xpex 4719 | . . 3 |
34 | ssexg 4121 | . . 3 | |
35 | 28, 33, 34 | sylancl 410 | . 2 |
36 | breq 3984 | . . . . . 6 | |
37 | 36 | anbi2d 460 | . . . . 5 |
38 | 37 | opabbidv 4048 | . . . 4 |
39 | oveq2 5850 | . . . . . . 7 | |
40 | 39 | breq1d 3992 | . . . . . 6 |
41 | 40 | anbi2d 460 | . . . . 5 |
42 | 41 | opabbidv 4048 | . . . 4 |
43 | df-shft 10757 | . . . 4 | |
44 | 38, 42, 43 | ovmpog 5976 | . . 3 |
45 | 29, 44 | mp3an1 1314 | . 2 |
46 | 35, 45 | mpdan 418 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cab 2151 wrex 2445 cvv 2726 wss 3116 class class class wbr 3982 copab 4042 cxp 4602 cdm 4604 crn 4605 (class class class)co 5842 cc 7751 caddc 7756 cmin 8069 cshi 10756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-shft 10757 |
This theorem is referenced by: shftdm 10764 shftfib 10765 shftfn 10766 2shfti 10773 shftidt2 10774 |
Copyright terms: Public domain | W3C validator |