ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfval Unicode version

Theorem shftfval 11327
Description: The value of the sequence shifter operation is a function on 
CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftfval  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
Distinct variable groups:    x, y, A   
x, F, y

Proof of Theorem shftfval
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  e.  CC )
2 simpll 527 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  A  e.  CC )
31, 2subcld 8453 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  -  A )  e.  CC )
4 vex 2802 . . . . . . . . . . 11  |-  y  e. 
_V
5 breldmg 4928 . . . . . . . . . . 11  |-  ( ( ( x  -  A
)  e.  CC  /\  y  e.  _V  /\  (
x  -  A ) F y )  -> 
( x  -  A
)  e.  dom  F
)
64, 5mp3an2 1359 . . . . . . . . . 10  |-  ( ( ( x  -  A
)  e.  CC  /\  ( x  -  A
) F y )  ->  ( x  -  A )  e.  dom  F )
73, 6sylancom 420 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  -  A )  e.  dom  F )
8 npcan 8351 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
98eqcomd 2235 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
109ancoms 268 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
1110adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  =  ( ( x  -  A )  +  A
) )
12 oveq1 6007 . . . . . . . . . . 11  |-  ( w  =  ( x  -  A )  ->  (
w  +  A )  =  ( ( x  -  A )  +  A ) )
1312eqeq2d 2241 . . . . . . . . . 10  |-  ( w  =  ( x  -  A )  ->  (
x  =  ( w  +  A )  <->  x  =  ( ( x  -  A )  +  A
) ) )
1413rspcev 2907 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  dom  F  /\  x  =  (
( x  -  A
)  +  A ) )  ->  E. w  e.  dom  F  x  =  ( w  +  A
) )
157, 11, 14syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  E. w  e.  dom  F  x  =  ( w  +  A
) )
16 vex 2802 . . . . . . . . 9  |-  x  e. 
_V
17 eqeq1 2236 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  =  ( w  +  A )  <->  x  =  ( w  +  A
) ) )
1817rexbidv 2531 . . . . . . . . 9  |-  ( z  =  x  ->  ( E. w  e.  dom  F  z  =  ( w  +  A )  <->  E. w  e.  dom  F  x  =  ( w  +  A
) ) )
1916, 18elab 2947 . . . . . . . 8  |-  ( x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  <->  E. w  e.  dom  F  x  =  ( w  +  A ) )
2015, 19sylibr 134 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) } )
21 brelrng 4954 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  CC  /\  y  e.  _V  /\  (
x  -  A ) F y )  -> 
y  e.  ran  F
)
224, 21mp3an2 1359 . . . . . . . 8  |-  ( ( ( x  -  A
)  e.  CC  /\  ( x  -  A
) F y )  ->  y  e.  ran  F )
233, 22sylancom 420 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  y  e.  ran  F )
2420, 23jca 306 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  /\  y  e.  ran  F ) )
2524expl 378 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  ->  ( x  e. 
{ z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  /\  y  e.  ran  F ) ) )
2625ssopab2dv 4366 . . . 4  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  C_  { <. x ,  y >.  |  ( x  e.  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  /\  y  e.  ran  F ) } )
27 df-xp 4724 . . . 4  |-  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F )  =  { <. x ,  y >.  |  ( x  e.  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  /\  y  e.  ran  F ) }
2826, 27sseqtrrdi 3273 . . 3  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  C_  ( {
z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F ) )
29 shftfval.1 . . . . . 6  |-  F  e. 
_V
3029dmex 4990 . . . . 5  |-  dom  F  e.  _V
3130abrexex 6260 . . . 4  |-  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  e.  _V
3229rnex 4991 . . . 4  |-  ran  F  e.  _V
3331, 32xpex 4833 . . 3  |-  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F )  e.  _V
34 ssexg 4222 . . 3  |-  ( ( { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  C_  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  /\  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  e.  _V )  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  e.  _V )
3528, 33, 34sylancl 413 . 2  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  e.  _V )
36 breq 4084 . . . . . 6  |-  ( z  =  F  ->  (
( x  -  w
) z y  <->  ( x  -  w ) F y ) )
3736anbi2d 464 . . . . 5  |-  ( z  =  F  ->  (
( x  e.  CC  /\  ( x  -  w
) z y )  <-> 
( x  e.  CC  /\  ( x  -  w
) F y ) ) )
3837opabbidv 4149 . . . 4  |-  ( z  =  F  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) z y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) F y ) } )
39 oveq2 6008 . . . . . . 7  |-  ( w  =  A  ->  (
x  -  w )  =  ( x  -  A ) )
4039breq1d 4092 . . . . . 6  |-  ( w  =  A  ->  (
( x  -  w
) F y  <->  ( x  -  A ) F y ) )
4140anbi2d 464 . . . . 5  |-  ( w  =  A  ->  (
( x  e.  CC  /\  ( x  -  w
) F y )  <-> 
( x  e.  CC  /\  ( x  -  A
) F y ) ) )
4241opabbidv 4149 . . . 4  |-  ( w  =  A  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
43 df-shft 11321 . . . 4  |-  shift  =  ( z  e.  _V ,  w  e.  CC  |->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) z y ) } )
4438, 42, 43ovmpog 6138 . . 3  |-  ( ( F  e.  _V  /\  A  e.  CC  /\  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  e.  _V )  ->  ( F 
shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
4529, 44mp3an1 1358 . 2  |-  ( ( A  e.  CC  /\  {
<. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  e.  _V )  ->  ( F 
shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
4635, 45mpdan 421 1  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799    C_ wss 3197   class class class wbr 4082   {copab 4143    X. cxp 4716   dom cdm 4718   ran crn 4719  (class class class)co 6000   CCcc 7993    + caddc 7998    - cmin 8313    shift cshi 11320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315  df-shft 11321
This theorem is referenced by:  shftdm  11328  shftfib  11329  shftfn  11330  2shfti  11337  shftidt2  11338
  Copyright terms: Public domain W3C validator