ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfval Unicode version

Theorem shftfval 11003
Description: The value of the sequence shifter operation is a function on 
CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftfval  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
Distinct variable groups:    x, y, A   
x, F, y

Proof of Theorem shftfval
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 528 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  e.  CC )
2 simpll 527 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  A  e.  CC )
31, 2subcld 8354 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  -  A )  e.  CC )
4 vex 2766 . . . . . . . . . . 11  |-  y  e. 
_V
5 breldmg 4873 . . . . . . . . . . 11  |-  ( ( ( x  -  A
)  e.  CC  /\  y  e.  _V  /\  (
x  -  A ) F y )  -> 
( x  -  A
)  e.  dom  F
)
64, 5mp3an2 1336 . . . . . . . . . 10  |-  ( ( ( x  -  A
)  e.  CC  /\  ( x  -  A
) F y )  ->  ( x  -  A )  e.  dom  F )
73, 6sylancom 420 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  -  A )  e.  dom  F )
8 npcan 8252 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
98eqcomd 2202 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
109ancoms 268 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
1110adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  =  ( ( x  -  A )  +  A
) )
12 oveq1 5932 . . . . . . . . . . 11  |-  ( w  =  ( x  -  A )  ->  (
w  +  A )  =  ( ( x  -  A )  +  A ) )
1312eqeq2d 2208 . . . . . . . . . 10  |-  ( w  =  ( x  -  A )  ->  (
x  =  ( w  +  A )  <->  x  =  ( ( x  -  A )  +  A
) ) )
1413rspcev 2868 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  dom  F  /\  x  =  (
( x  -  A
)  +  A ) )  ->  E. w  e.  dom  F  x  =  ( w  +  A
) )
157, 11, 14syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  E. w  e.  dom  F  x  =  ( w  +  A
) )
16 vex 2766 . . . . . . . . 9  |-  x  e. 
_V
17 eqeq1 2203 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  =  ( w  +  A )  <->  x  =  ( w  +  A
) ) )
1817rexbidv 2498 . . . . . . . . 9  |-  ( z  =  x  ->  ( E. w  e.  dom  F  z  =  ( w  +  A )  <->  E. w  e.  dom  F  x  =  ( w  +  A
) ) )
1916, 18elab 2908 . . . . . . . 8  |-  ( x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  <->  E. w  e.  dom  F  x  =  ( w  +  A ) )
2015, 19sylibr 134 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) } )
21 brelrng 4898 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  CC  /\  y  e.  _V  /\  (
x  -  A ) F y )  -> 
y  e.  ran  F
)
224, 21mp3an2 1336 . . . . . . . 8  |-  ( ( ( x  -  A
)  e.  CC  /\  ( x  -  A
) F y )  ->  y  e.  ran  F )
233, 22sylancom 420 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  y  e.  ran  F )
2420, 23jca 306 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  /\  y  e.  ran  F ) )
2524expl 378 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  ->  ( x  e. 
{ z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  /\  y  e.  ran  F ) ) )
2625ssopab2dv 4314 . . . 4  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  C_  { <. x ,  y >.  |  ( x  e.  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  /\  y  e.  ran  F ) } )
27 df-xp 4670 . . . 4  |-  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F )  =  { <. x ,  y >.  |  ( x  e.  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  /\  y  e.  ran  F ) }
2826, 27sseqtrrdi 3233 . . 3  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  C_  ( {
z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F ) )
29 shftfval.1 . . . . . 6  |-  F  e. 
_V
3029dmex 4933 . . . . 5  |-  dom  F  e.  _V
3130abrexex 6183 . . . 4  |-  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  e.  _V
3229rnex 4934 . . . 4  |-  ran  F  e.  _V
3331, 32xpex 4779 . . 3  |-  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F )  e.  _V
34 ssexg 4173 . . 3  |-  ( ( { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  C_  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  /\  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  e.  _V )  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  e.  _V )
3528, 33, 34sylancl 413 . 2  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  e.  _V )
36 breq 4036 . . . . . 6  |-  ( z  =  F  ->  (
( x  -  w
) z y  <->  ( x  -  w ) F y ) )
3736anbi2d 464 . . . . 5  |-  ( z  =  F  ->  (
( x  e.  CC  /\  ( x  -  w
) z y )  <-> 
( x  e.  CC  /\  ( x  -  w
) F y ) ) )
3837opabbidv 4100 . . . 4  |-  ( z  =  F  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) z y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) F y ) } )
39 oveq2 5933 . . . . . . 7  |-  ( w  =  A  ->  (
x  -  w )  =  ( x  -  A ) )
4039breq1d 4044 . . . . . 6  |-  ( w  =  A  ->  (
( x  -  w
) F y  <->  ( x  -  A ) F y ) )
4140anbi2d 464 . . . . 5  |-  ( w  =  A  ->  (
( x  e.  CC  /\  ( x  -  w
) F y )  <-> 
( x  e.  CC  /\  ( x  -  A
) F y ) ) )
4241opabbidv 4100 . . . 4  |-  ( w  =  A  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
43 df-shft 10997 . . . 4  |-  shift  =  ( z  e.  _V ,  w  e.  CC  |->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) z y ) } )
4438, 42, 43ovmpog 6061 . . 3  |-  ( ( F  e.  _V  /\  A  e.  CC  /\  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  e.  _V )  ->  ( F 
shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
4529, 44mp3an1 1335 . 2  |-  ( ( A  e.  CC  /\  {
<. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  e.  _V )  ->  ( F 
shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
4635, 45mpdan 421 1  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476   _Vcvv 2763    C_ wss 3157   class class class wbr 4034   {copab 4094    X. cxp 4662   dom cdm 4664   ran crn 4665  (class class class)co 5925   CCcc 7894    + caddc 7899    - cmin 8214    shift cshi 10996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-shft 10997
This theorem is referenced by:  shftdm  11004  shftfib  11005  shftfn  11006  2shfti  11013  shftidt2  11014
  Copyright terms: Public domain W3C validator