| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > shftfvalg | Unicode version | ||
| Description: The value of the sequence
shifter operation is a function on |
| Ref | Expression |
|---|---|
| shftfvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | simpl 109 |
. 2
| |
| 3 | simplr 528 |
. . . . . . . . . . 11
| |
| 4 | simpll 527 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | subcld 8457 |
. . . . . . . . . 10
|
| 6 | vex 2802 |
. . . . . . . . . . 11
| |
| 7 | breldmg 4929 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | mp3an2 1359 |
. . . . . . . . . 10
|
| 9 | 5, 8 | sylancom 420 |
. . . . . . . . 9
|
| 10 | npcan 8355 |
. . . . . . . . . . . 12
| |
| 11 | 10 | eqcomd 2235 |
. . . . . . . . . . 11
|
| 12 | 11 | ancoms 268 |
. . . . . . . . . 10
|
| 13 | 12 | adantr 276 |
. . . . . . . . 9
|
| 14 | oveq1 6008 |
. . . . . . . . . . 11
| |
| 15 | 14 | eqeq2d 2241 |
. . . . . . . . . 10
|
| 16 | 15 | rspcev 2907 |
. . . . . . . . 9
|
| 17 | 9, 13, 16 | syl2anc 411 |
. . . . . . . 8
|
| 18 | vex 2802 |
. . . . . . . . 9
| |
| 19 | eqeq1 2236 |
. . . . . . . . . 10
| |
| 20 | 19 | rexbidv 2531 |
. . . . . . . . 9
|
| 21 | 18, 20 | elab 2947 |
. . . . . . . 8
|
| 22 | 17, 21 | sylibr 134 |
. . . . . . 7
|
| 23 | brelrng 4955 |
. . . . . . . . 9
| |
| 24 | 6, 23 | mp3an2 1359 |
. . . . . . . 8
|
| 25 | 5, 24 | sylancom 420 |
. . . . . . 7
|
| 26 | 22, 25 | jca 306 |
. . . . . 6
|
| 27 | 26 | expl 378 |
. . . . 5
|
| 28 | 27 | ssopab2dv 4367 |
. . . 4
|
| 29 | df-xp 4725 |
. . . 4
| |
| 30 | 28, 29 | sseqtrrdi 3273 |
. . 3
|
| 31 | dmexg 4988 |
. . . . 5
| |
| 32 | abrexexg 6263 |
. . . . 5
| |
| 33 | 31, 32 | syl 14 |
. . . 4
|
| 34 | rnexg 4989 |
. . . 4
| |
| 35 | xpexg 4833 |
. . . 4
| |
| 36 | 33, 34, 35 | syl2anc 411 |
. . 3
|
| 37 | ssexg 4223 |
. . 3
| |
| 38 | 30, 36, 37 | syl2an 289 |
. 2
|
| 39 | elex 2811 |
. . 3
| |
| 40 | breq 4085 |
. . . . . 6
| |
| 41 | 40 | anbi2d 464 |
. . . . 5
|
| 42 | 41 | opabbidv 4150 |
. . . 4
|
| 43 | oveq2 6009 |
. . . . . . 7
| |
| 44 | 43 | breq1d 4093 |
. . . . . 6
|
| 45 | 44 | anbi2d 464 |
. . . . 5
|
| 46 | 45 | opabbidv 4150 |
. . . 4
|
| 47 | df-shft 11326 |
. . . 4
| |
| 48 | 42, 46, 47 | ovmpog 6139 |
. . 3
|
| 49 | 39, 48 | syl3an1 1304 |
. 2
|
| 50 | 1, 2, 38, 49 | syl3anc 1271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-shft 11326 |
| This theorem is referenced by: ovshftex 11330 shftfibg 11331 2shfti 11342 |
| Copyright terms: Public domain | W3C validator |