ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftfvalg Unicode version

Theorem shftfvalg 10622
Description: The value of the sequence shifter operation is a function on 
CC.  A is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
shftfvalg  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
Distinct variable groups:    x, y, A   
x, F, y
Allowed substitution hints:    V( x, y)

Proof of Theorem shftfvalg
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . 2  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  F  e.  V )
2 simpl 108 . 2  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  A  e.  CC )
3 simplr 520 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  e.  CC )
4 simpll 519 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  A  e.  CC )
53, 4subcld 8097 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  -  A )  e.  CC )
6 vex 2692 . . . . . . . . . . 11  |-  y  e. 
_V
7 breldmg 4753 . . . . . . . . . . 11  |-  ( ( ( x  -  A
)  e.  CC  /\  y  e.  _V  /\  (
x  -  A ) F y )  -> 
( x  -  A
)  e.  dom  F
)
86, 7mp3an2 1304 . . . . . . . . . 10  |-  ( ( ( x  -  A
)  e.  CC  /\  ( x  -  A
) F y )  ->  ( x  -  A )  e.  dom  F )
95, 8sylancom 417 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  -  A )  e.  dom  F )
10 npcan 7995 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( ( x  -  A )  +  A
)  =  x )
1110eqcomd 2146 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
1211ancoms 266 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  =  ( ( x  -  A )  +  A ) )
1312adantr 274 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  =  ( ( x  -  A )  +  A
) )
14 oveq1 5789 . . . . . . . . . . 11  |-  ( w  =  ( x  -  A )  ->  (
w  +  A )  =  ( ( x  -  A )  +  A ) )
1514eqeq2d 2152 . . . . . . . . . 10  |-  ( w  =  ( x  -  A )  ->  (
x  =  ( w  +  A )  <->  x  =  ( ( x  -  A )  +  A
) ) )
1615rspcev 2793 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  dom  F  /\  x  =  (
( x  -  A
)  +  A ) )  ->  E. w  e.  dom  F  x  =  ( w  +  A
) )
179, 13, 16syl2anc 409 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  E. w  e.  dom  F  x  =  ( w  +  A
) )
18 vex 2692 . . . . . . . . 9  |-  x  e. 
_V
19 eqeq1 2147 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  =  ( w  +  A )  <->  x  =  ( w  +  A
) ) )
2019rexbidv 2439 . . . . . . . . 9  |-  ( z  =  x  ->  ( E. w  e.  dom  F  z  =  ( w  +  A )  <->  E. w  e.  dom  F  x  =  ( w  +  A
) ) )
2118, 20elab 2832 . . . . . . . 8  |-  ( x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  <->  E. w  e.  dom  F  x  =  ( w  +  A ) )
2217, 21sylibr 133 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) } )
23 brelrng 4778 . . . . . . . . 9  |-  ( ( ( x  -  A
)  e.  CC  /\  y  e.  _V  /\  (
x  -  A ) F y )  -> 
y  e.  ran  F
)
246, 23mp3an2 1304 . . . . . . . 8  |-  ( ( ( x  -  A
)  e.  CC  /\  ( x  -  A
) F y )  ->  y  e.  ran  F )
255, 24sylancom 417 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  y  e.  ran  F )
2622, 25jca 304 . . . . . 6  |-  ( ( ( A  e.  CC  /\  x  e.  CC )  /\  ( x  -  A ) F y )  ->  ( x  e.  { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  /\  y  e.  ran  F ) )
2726expl 376 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
) F y )  ->  ( x  e. 
{ z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  /\  y  e.  ran  F ) ) )
2827ssopab2dv 4208 . . . 4  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  C_  { <. x ,  y >.  |  ( x  e.  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  /\  y  e.  ran  F ) } )
29 df-xp 4553 . . . 4  |-  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F )  =  { <. x ,  y >.  |  ( x  e.  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  /\  y  e.  ran  F ) }
3028, 29sseqtrrdi 3151 . . 3  |-  ( A  e.  CC  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  C_  ( {
z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  X.  ran  F ) )
31 dmexg 4811 . . . . 5  |-  ( F  e.  V  ->  dom  F  e.  _V )
32 abrexexg 6024 . . . . 5  |-  ( dom 
F  e.  _V  ->  { z  |  E. w  e.  dom  F  z  =  ( w  +  A
) }  e.  _V )
3331, 32syl 14 . . . 4  |-  ( F  e.  V  ->  { z  |  E. w  e. 
dom  F  z  =  ( w  +  A
) }  e.  _V )
34 rnexg 4812 . . . 4  |-  ( F  e.  V  ->  ran  F  e.  _V )
35 xpexg 4661 . . . 4  |-  ( ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  e.  _V  /\  ran  F  e. 
_V )  ->  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  e.  _V )
3633, 34, 35syl2anc 409 . . 3  |-  ( F  e.  V  ->  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  e.  _V )
37 ssexg 4075 . . 3  |-  ( ( { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  C_  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  /\  ( { z  |  E. w  e.  dom  F  z  =  ( w  +  A ) }  X.  ran  F )  e.  _V )  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) }  e.  _V )
3830, 36, 37syl2an 287 . 2  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  e.  _V )
39 elex 2700 . . 3  |-  ( F  e.  V  ->  F  e.  _V )
40 breq 3939 . . . . . 6  |-  ( z  =  F  ->  (
( x  -  w
) z y  <->  ( x  -  w ) F y ) )
4140anbi2d 460 . . . . 5  |-  ( z  =  F  ->  (
( x  e.  CC  /\  ( x  -  w
) z y )  <-> 
( x  e.  CC  /\  ( x  -  w
) F y ) ) )
4241opabbidv 4002 . . . 4  |-  ( z  =  F  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) z y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) F y ) } )
43 oveq2 5790 . . . . . . 7  |-  ( w  =  A  ->  (
x  -  w )  =  ( x  -  A ) )
4443breq1d 3947 . . . . . 6  |-  ( w  =  A  ->  (
( x  -  w
) F y  <->  ( x  -  A ) F y ) )
4544anbi2d 460 . . . . 5  |-  ( w  =  A  ->  (
( x  e.  CC  /\  ( x  -  w
) F y )  <-> 
( x  e.  CC  /\  ( x  -  A
) F y ) ) )
4645opabbidv 4002 . . . 4  |-  ( w  =  A  ->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) F y ) }  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
47 df-shft 10619 . . . 4  |-  shift  =  ( z  e.  _V ,  w  e.  CC  |->  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  w
) z y ) } )
4842, 46, 47ovmpog 5913 . . 3  |-  ( ( F  e.  _V  /\  A  e.  CC  /\  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  e.  _V )  ->  ( F 
shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
4939, 48syl3an1 1250 . 2  |-  ( ( F  e.  V  /\  A  e.  CC  /\  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  e.  _V )  ->  ( F 
shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
501, 2, 38, 49syl3anc 1217 1  |-  ( ( A  e.  CC  /\  F  e.  V )  ->  ( F  shift  A )  =  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   {cab 2126   E.wrex 2418   _Vcvv 2689    C_ wss 3076   class class class wbr 3937   {copab 3996    X. cxp 4545   dom cdm 4547   ran crn 4548  (class class class)co 5782   CCcc 7642    + caddc 7647    - cmin 7957    shift cshi 10618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sub 7959  df-shft 10619
This theorem is referenced by:  ovshftex  10623  shftfibg  10624  2shfti  10635
  Copyright terms: Public domain W3C validator