| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > shftfvalg | Unicode version | ||
| Description: The value of the sequence
shifter operation is a function on  | 
| Ref | Expression | 
|---|---|
| shftfvalg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | 
. 2
 | |
| 2 | simpl 109 | 
. 2
 | |
| 3 | simplr 528 | 
. . . . . . . . . . 11
 | |
| 4 | simpll 527 | 
. . . . . . . . . . 11
 | |
| 5 | 3, 4 | subcld 8337 | 
. . . . . . . . . 10
 | 
| 6 | vex 2766 | 
. . . . . . . . . . 11
 | |
| 7 | breldmg 4872 | 
. . . . . . . . . . 11
 | |
| 8 | 6, 7 | mp3an2 1336 | 
. . . . . . . . . 10
 | 
| 9 | 5, 8 | sylancom 420 | 
. . . . . . . . 9
 | 
| 10 | npcan 8235 | 
. . . . . . . . . . . 12
 | |
| 11 | 10 | eqcomd 2202 | 
. . . . . . . . . . 11
 | 
| 12 | 11 | ancoms 268 | 
. . . . . . . . . 10
 | 
| 13 | 12 | adantr 276 | 
. . . . . . . . 9
 | 
| 14 | oveq1 5929 | 
. . . . . . . . . . 11
 | |
| 15 | 14 | eqeq2d 2208 | 
. . . . . . . . . 10
 | 
| 16 | 15 | rspcev 2868 | 
. . . . . . . . 9
 | 
| 17 | 9, 13, 16 | syl2anc 411 | 
. . . . . . . 8
 | 
| 18 | vex 2766 | 
. . . . . . . . 9
 | |
| 19 | eqeq1 2203 | 
. . . . . . . . . 10
 | |
| 20 | 19 | rexbidv 2498 | 
. . . . . . . . 9
 | 
| 21 | 18, 20 | elab 2908 | 
. . . . . . . 8
 | 
| 22 | 17, 21 | sylibr 134 | 
. . . . . . 7
 | 
| 23 | brelrng 4897 | 
. . . . . . . . 9
 | |
| 24 | 6, 23 | mp3an2 1336 | 
. . . . . . . 8
 | 
| 25 | 5, 24 | sylancom 420 | 
. . . . . . 7
 | 
| 26 | 22, 25 | jca 306 | 
. . . . . 6
 | 
| 27 | 26 | expl 378 | 
. . . . 5
 | 
| 28 | 27 | ssopab2dv 4313 | 
. . . 4
 | 
| 29 | df-xp 4669 | 
. . . 4
 | |
| 30 | 28, 29 | sseqtrrdi 3232 | 
. . 3
 | 
| 31 | dmexg 4930 | 
. . . . 5
 | |
| 32 | abrexexg 6175 | 
. . . . 5
 | |
| 33 | 31, 32 | syl 14 | 
. . . 4
 | 
| 34 | rnexg 4931 | 
. . . 4
 | |
| 35 | xpexg 4777 | 
. . . 4
 | |
| 36 | 33, 34, 35 | syl2anc 411 | 
. . 3
 | 
| 37 | ssexg 4172 | 
. . 3
 | |
| 38 | 30, 36, 37 | syl2an 289 | 
. 2
 | 
| 39 | elex 2774 | 
. . 3
 | |
| 40 | breq 4035 | 
. . . . . 6
 | |
| 41 | 40 | anbi2d 464 | 
. . . . 5
 | 
| 42 | 41 | opabbidv 4099 | 
. . . 4
 | 
| 43 | oveq2 5930 | 
. . . . . . 7
 | |
| 44 | 43 | breq1d 4043 | 
. . . . . 6
 | 
| 45 | 44 | anbi2d 464 | 
. . . . 5
 | 
| 46 | 45 | opabbidv 4099 | 
. . . 4
 | 
| 47 | df-shft 10980 | 
. . . 4
 | |
| 48 | 42, 46, 47 | ovmpog 6057 | 
. . 3
 | 
| 49 | 39, 48 | syl3an1 1282 | 
. 2
 | 
| 50 | 1, 2, 38, 49 | syl3anc 1249 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-shft 10980 | 
| This theorem is referenced by: ovshftex 10984 shftfibg 10985 2shfti 10996 | 
| Copyright terms: Public domain | W3C validator |