| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > shftfvalg | Unicode version | ||
| Description: The value of the sequence
shifter operation is a function on |
| Ref | Expression |
|---|---|
| shftfvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | simpl 109 |
. 2
| |
| 3 | simplr 528 |
. . . . . . . . . . 11
| |
| 4 | simpll 527 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | subcld 8354 |
. . . . . . . . . 10
|
| 6 | vex 2766 |
. . . . . . . . . . 11
| |
| 7 | breldmg 4873 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | mp3an2 1336 |
. . . . . . . . . 10
|
| 9 | 5, 8 | sylancom 420 |
. . . . . . . . 9
|
| 10 | npcan 8252 |
. . . . . . . . . . . 12
| |
| 11 | 10 | eqcomd 2202 |
. . . . . . . . . . 11
|
| 12 | 11 | ancoms 268 |
. . . . . . . . . 10
|
| 13 | 12 | adantr 276 |
. . . . . . . . 9
|
| 14 | oveq1 5932 |
. . . . . . . . . . 11
| |
| 15 | 14 | eqeq2d 2208 |
. . . . . . . . . 10
|
| 16 | 15 | rspcev 2868 |
. . . . . . . . 9
|
| 17 | 9, 13, 16 | syl2anc 411 |
. . . . . . . 8
|
| 18 | vex 2766 |
. . . . . . . . 9
| |
| 19 | eqeq1 2203 |
. . . . . . . . . 10
| |
| 20 | 19 | rexbidv 2498 |
. . . . . . . . 9
|
| 21 | 18, 20 | elab 2908 |
. . . . . . . 8
|
| 22 | 17, 21 | sylibr 134 |
. . . . . . 7
|
| 23 | brelrng 4898 |
. . . . . . . . 9
| |
| 24 | 6, 23 | mp3an2 1336 |
. . . . . . . 8
|
| 25 | 5, 24 | sylancom 420 |
. . . . . . 7
|
| 26 | 22, 25 | jca 306 |
. . . . . 6
|
| 27 | 26 | expl 378 |
. . . . 5
|
| 28 | 27 | ssopab2dv 4314 |
. . . 4
|
| 29 | df-xp 4670 |
. . . 4
| |
| 30 | 28, 29 | sseqtrrdi 3233 |
. . 3
|
| 31 | dmexg 4931 |
. . . . 5
| |
| 32 | abrexexg 6184 |
. . . . 5
| |
| 33 | 31, 32 | syl 14 |
. . . 4
|
| 34 | rnexg 4932 |
. . . 4
| |
| 35 | xpexg 4778 |
. . . 4
| |
| 36 | 33, 34, 35 | syl2anc 411 |
. . 3
|
| 37 | ssexg 4173 |
. . 3
| |
| 38 | 30, 36, 37 | syl2an 289 |
. 2
|
| 39 | elex 2774 |
. . 3
| |
| 40 | breq 4036 |
. . . . . 6
| |
| 41 | 40 | anbi2d 464 |
. . . . 5
|
| 42 | 41 | opabbidv 4100 |
. . . 4
|
| 43 | oveq2 5933 |
. . . . . . 7
| |
| 44 | 43 | breq1d 4044 |
. . . . . 6
|
| 45 | 44 | anbi2d 464 |
. . . . 5
|
| 46 | 45 | opabbidv 4100 |
. . . 4
|
| 47 | df-shft 10997 |
. . . 4
| |
| 48 | 42, 46, 47 | ovmpog 6061 |
. . 3
|
| 49 | 39, 48 | syl3an1 1282 |
. 2
|
| 50 | 1, 2, 38, 49 | syl3anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-shft 10997 |
| This theorem is referenced by: ovshftex 11001 shftfibg 11002 2shfti 11013 |
| Copyright terms: Public domain | W3C validator |