| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > shftfvalg | Unicode version | ||
| Description: The value of the sequence
shifter operation is a function on |
| Ref | Expression |
|---|---|
| shftfvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | simpl 109 |
. 2
| |
| 3 | simplr 528 |
. . . . . . . . . . 11
| |
| 4 | simpll 527 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | subcld 8418 |
. . . . . . . . . 10
|
| 6 | vex 2779 |
. . . . . . . . . . 11
| |
| 7 | breldmg 4903 |
. . . . . . . . . . 11
| |
| 8 | 6, 7 | mp3an2 1338 |
. . . . . . . . . 10
|
| 9 | 5, 8 | sylancom 420 |
. . . . . . . . 9
|
| 10 | npcan 8316 |
. . . . . . . . . . . 12
| |
| 11 | 10 | eqcomd 2213 |
. . . . . . . . . . 11
|
| 12 | 11 | ancoms 268 |
. . . . . . . . . 10
|
| 13 | 12 | adantr 276 |
. . . . . . . . 9
|
| 14 | oveq1 5974 |
. . . . . . . . . . 11
| |
| 15 | 14 | eqeq2d 2219 |
. . . . . . . . . 10
|
| 16 | 15 | rspcev 2884 |
. . . . . . . . 9
|
| 17 | 9, 13, 16 | syl2anc 411 |
. . . . . . . 8
|
| 18 | vex 2779 |
. . . . . . . . 9
| |
| 19 | eqeq1 2214 |
. . . . . . . . . 10
| |
| 20 | 19 | rexbidv 2509 |
. . . . . . . . 9
|
| 21 | 18, 20 | elab 2924 |
. . . . . . . 8
|
| 22 | 17, 21 | sylibr 134 |
. . . . . . 7
|
| 23 | brelrng 4928 |
. . . . . . . . 9
| |
| 24 | 6, 23 | mp3an2 1338 |
. . . . . . . 8
|
| 25 | 5, 24 | sylancom 420 |
. . . . . . 7
|
| 26 | 22, 25 | jca 306 |
. . . . . 6
|
| 27 | 26 | expl 378 |
. . . . 5
|
| 28 | 27 | ssopab2dv 4343 |
. . . 4
|
| 29 | df-xp 4699 |
. . . 4
| |
| 30 | 28, 29 | sseqtrrdi 3250 |
. . 3
|
| 31 | dmexg 4961 |
. . . . 5
| |
| 32 | abrexexg 6226 |
. . . . 5
| |
| 33 | 31, 32 | syl 14 |
. . . 4
|
| 34 | rnexg 4962 |
. . . 4
| |
| 35 | xpexg 4807 |
. . . 4
| |
| 36 | 33, 34, 35 | syl2anc 411 |
. . 3
|
| 37 | ssexg 4199 |
. . 3
| |
| 38 | 30, 36, 37 | syl2an 289 |
. 2
|
| 39 | elex 2788 |
. . 3
| |
| 40 | breq 4061 |
. . . . . 6
| |
| 41 | 40 | anbi2d 464 |
. . . . 5
|
| 42 | 41 | opabbidv 4126 |
. . . 4
|
| 43 | oveq2 5975 |
. . . . . . 7
| |
| 44 | 43 | breq1d 4069 |
. . . . . 6
|
| 45 | 44 | anbi2d 464 |
. . . . 5
|
| 46 | 45 | opabbidv 4126 |
. . . 4
|
| 47 | df-shft 11241 |
. . . 4
| |
| 48 | 42, 46, 47 | ovmpog 6103 |
. . 3
|
| 49 | 39, 48 | syl3an1 1283 |
. 2
|
| 50 | 1, 2, 38, 49 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-shft 11241 |
| This theorem is referenced by: ovshftex 11245 shftfibg 11246 2shfti 11257 |
| Copyright terms: Public domain | W3C validator |