| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrdi | Unicode version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 |
|
| eqbrtrdi.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 |
. 2
| |
| 2 | eqbrtrdi.1 |
. . 3
| |
| 3 | 2 | breq1d 4044 |
. 2
|
| 4 | 1, 3 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: eqbrtrrdi 4074 pm54.43 7259 recapb 8700 nn0ledivnn 9844 xltnegi 9912 leexp1a 10688 facwordi 10834 faclbnd3 10837 resqrexlemlo 11180 efap0 11844 dvds1 12020 en1top 14323 dvef 14973 rpabscxpbnd 15186 zabsle1 15250 lgseisen 15325 lgsquadlem2 15329 trirec0 15698 |
| Copyright terms: Public domain | W3C validator |