| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrdi | Unicode version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 |
|
| eqbrtrdi.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 |
. 2
| |
| 2 | eqbrtrdi.1 |
. . 3
| |
| 3 | 2 | breq1d 4069 |
. 2
|
| 4 | 1, 3 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: eqbrtrrdi 4099 pm54.43 7324 recapb 8779 nn0ledivnn 9924 xltnegi 9992 leexp1a 10776 facwordi 10922 faclbnd3 10925 resqrexlemlo 11439 efap0 12103 dvds1 12279 en1top 14664 dvef 15314 rpabscxpbnd 15527 zabsle1 15591 lgseisen 15666 lgsquadlem2 15670 trirec0 16185 |
| Copyright terms: Public domain | W3C validator |