ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrdi Unicode version

Theorem eqbrtrdi 4069
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
Hypotheses
Ref Expression
eqbrtrdi.1  |-  ( ph  ->  A  =  B )
eqbrtrdi.2  |-  B R C
Assertion
Ref Expression
eqbrtrdi  |-  ( ph  ->  A R C )

Proof of Theorem eqbrtrdi
StepHypRef Expression
1 eqbrtrdi.2 . 2  |-  B R C
2 eqbrtrdi.1 . . 3  |-  ( ph  ->  A  =  B )
32breq1d 4040 . 2  |-  ( ph  ->  ( A R C  <-> 
B R C ) )
41, 3mpbiri 168 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   class class class wbr 4030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031
This theorem is referenced by:  eqbrtrrdi  4070  pm54.43  7252  recapb  8692  nn0ledivnn  9836  xltnegi  9904  leexp1a  10668  facwordi  10814  faclbnd3  10817  resqrexlemlo  11160  efap0  11823  dvds1  11998  en1top  14256  dvef  14906  rpabscxpbnd  15114  zabsle1  15156  lgseisen  15231  lgsquadlem2  15235  trirec0  15604
  Copyright terms: Public domain W3C validator