| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrdi | Unicode version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 |
|
| eqbrtrdi.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 |
. 2
| |
| 2 | eqbrtrdi.1 |
. . 3
| |
| 3 | 2 | breq1d 4054 |
. 2
|
| 4 | 1, 3 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: eqbrtrrdi 4084 pm54.43 7298 recapb 8744 nn0ledivnn 9889 xltnegi 9957 leexp1a 10739 facwordi 10885 faclbnd3 10888 resqrexlemlo 11324 efap0 11988 dvds1 12164 en1top 14549 dvef 15199 rpabscxpbnd 15412 zabsle1 15476 lgseisen 15551 lgsquadlem2 15555 trirec0 15983 |
| Copyright terms: Public domain | W3C validator |