ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrdi Unicode version

Theorem eqbrtrdi 4068
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
Hypotheses
Ref Expression
eqbrtrdi.1  |-  ( ph  ->  A  =  B )
eqbrtrdi.2  |-  B R C
Assertion
Ref Expression
eqbrtrdi  |-  ( ph  ->  A R C )

Proof of Theorem eqbrtrdi
StepHypRef Expression
1 eqbrtrdi.2 . 2  |-  B R C
2 eqbrtrdi.1 . . 3  |-  ( ph  ->  A  =  B )
32breq1d 4039 . 2  |-  ( ph  ->  ( A R C  <-> 
B R C ) )
41, 3mpbiri 168 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   class class class wbr 4029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030
This theorem is referenced by:  eqbrtrrdi  4069  pm54.43  7250  recapb  8690  nn0ledivnn  9833  xltnegi  9901  leexp1a  10665  facwordi  10811  faclbnd3  10814  resqrexlemlo  11157  efap0  11820  dvds1  11995  en1top  14245  dvef  14873  rpabscxpbnd  15073  zabsle1  15115  lgseisen  15190  trirec0  15534
  Copyright terms: Public domain W3C validator