ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrdi Unicode version

Theorem eqbrtrdi 4073
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.)
Hypotheses
Ref Expression
eqbrtrdi.1  |-  ( ph  ->  A  =  B )
eqbrtrdi.2  |-  B R C
Assertion
Ref Expression
eqbrtrdi  |-  ( ph  ->  A R C )

Proof of Theorem eqbrtrdi
StepHypRef Expression
1 eqbrtrdi.2 . 2  |-  B R C
2 eqbrtrdi.1 . . 3  |-  ( ph  ->  A  =  B )
32breq1d 4044 . 2  |-  ( ph  ->  ( A R C  <-> 
B R C ) )
41, 3mpbiri 168 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   class class class wbr 4034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035
This theorem is referenced by:  eqbrtrrdi  4074  pm54.43  7269  recapb  8715  nn0ledivnn  9859  xltnegi  9927  leexp1a  10703  facwordi  10849  faclbnd3  10852  resqrexlemlo  11195  efap0  11859  dvds1  12035  en1top  14397  dvef  15047  rpabscxpbnd  15260  zabsle1  15324  lgseisen  15399  lgsquadlem2  15403  trirec0  15775
  Copyright terms: Public domain W3C validator