| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrdi | Unicode version | ||
| Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrdi.1 |
|
| eqbrtrdi.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrdi.2 |
. 2
| |
| 2 | eqbrtrdi.1 |
. . 3
| |
| 3 | 2 | breq1d 4093 |
. 2
|
| 4 | 1, 3 | mpbiri 168 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: eqbrtrrdi 4123 pm54.43 7363 recapb 8818 nn0ledivnn 9963 xltnegi 10031 leexp1a 10816 facwordi 10962 faclbnd3 10965 resqrexlemlo 11524 efap0 12188 dvds1 12364 en1top 14751 dvef 15401 rpabscxpbnd 15614 zabsle1 15678 lgseisen 15753 lgsquadlem2 15757 trirec0 16412 |
| Copyright terms: Public domain | W3C validator |