Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrtrdi | Unicode version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrdi.1 | |
eqbrtrdi.2 |
Ref | Expression |
---|---|
eqbrtrdi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrdi.2 | . 2 | |
2 | eqbrtrdi.1 | . . 3 | |
3 | 2 | breq1d 3992 | . 2 |
4 | 1, 3 | mpbiri 167 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: eqbrtrrdi 4022 pm54.43 7146 nn0ledivnn 9703 xltnegi 9771 leexp1a 10510 facwordi 10653 faclbnd3 10656 resqrexlemlo 10955 efap0 11618 dvds1 11791 en1top 12717 dvef 13328 rpabscxpbnd 13499 zabsle1 13540 trirec0 13923 |
Copyright terms: Public domain | W3C validator |