Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolemgt0 Unicode version

Theorem nconstwlpolemgt0 13583
Description: Lemma for nconstwlpo 13585. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpolem0.g  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
nconstwlpolem0.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
nconstwlpolemgt0.0  |-  ( ph  ->  E. x  e.  NN  ( G `  x )  =  1 )
Assertion
Ref Expression
nconstwlpolemgt0  |-  ( ph  ->  0  <  A )
Distinct variable groups:    x, A    i, G    ph, i, x
Allowed substitution hints:    A( i)    G( x)

Proof of Theorem nconstwlpolemgt0
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nconstwlpolemgt0.0 . 2  |-  ( ph  ->  E. x  e.  NN  ( G `  x )  =  1 )
2 1zzd 9173 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
1  e.  ZZ )
3 simprl 521 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  NN )
43peano2nnd 8827 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( x  +  1 )  e.  NN )
54nnzd 9264 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( x  +  1 )  e.  ZZ )
65, 2zsubcld 9270 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( x  + 
1 )  -  1 )  e.  ZZ )
72, 6fzfigd 10308 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  e.  Fin )
8 elfznn 9934 . . . . . . 7  |-  ( i  e.  ( 1 ... ( ( x  + 
1 )  -  1 ) )  ->  i  e.  NN )
9 2rp 9543 . . . . . . . . . . . 12  |-  2  e.  RR+
109a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  2  e.  RR+ )
11 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  i  e.  NN )
1211nnzd 9264 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  i  e.  ZZ )
1310, 12rpexpcld 10552 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
1413rpreccld 9592 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
1514rpred 9581 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
16 0re 7857 . . . . . . . . . 10  |-  0  e.  RR
17 1re 7856 . . . . . . . . . 10  |-  1  e.  RR
18 prssi 3710 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
1916, 17, 18mp2an 423 . . . . . . . . 9  |-  { 0 ,  1 }  C_  RR
20 nconstwlpolem0.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
2120ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  G : NN --> { 0 ,  1 } )
2221, 11ffvelrnd 5596 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( G `  i )  e.  {
0 ,  1 } )
2319, 22sseldi 3122 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( G `  i )  e.  RR )
2415, 23remulcld 7887 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  RR )
258, 24sylan2 284 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1 ... ( ( x  +  1 )  -  1 ) ) )  ->  ( (
1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  e.  RR )
267, 25fsumrecl 11275 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  e.  RR )
27 eqid 2154 . . . . . 6  |-  ( ZZ>= `  ( x  +  1
) )  =  (
ZZ>= `  ( x  + 
1 ) )
28 eqid 2154 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n
) ) )
29 oveq2 5822 . . . . . . . . 9  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
3029oveq2d 5830 . . . . . . . 8  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
31 fveq2 5461 . . . . . . . 8  |-  ( n  =  i  ->  ( G `  n )  =  ( G `  i ) )
3230, 31oveq12d 5832 . . . . . . 7  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( G `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
33 eluznn 9489 . . . . . . . 8  |-  ( ( ( x  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( x  +  1
) ) )  -> 
i  e.  NN )
344, 33sylan 281 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  i  e.  NN )
3534, 24syldan 280 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  RR )
3628, 32, 34, 35fvmptd3 5554 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
3720, 28trilpolemclim 13556 . . . . . . . 8  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n
) ) ) )  e.  dom  ~~>  )
3837adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( G `  n )
) ) )  e. 
dom 
~~>  )
39 nnuz 9453 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
4028, 32, 11, 24fvmptd3 5554 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
4124recnd 7885 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  CC )
4240, 41eqeltrd 2231 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) ) `
 i )  e.  CC )
4339, 4, 42iserex 11213 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
(  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n
) ) ) )  e.  dom  ~~>  <->  seq (
x  +  1 ) (  +  ,  ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( G `
 n ) ) ) )  e.  dom  ~~>  ) )
4438, 43mpbid 146 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  seq ( x  +  1 ) (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( G `  n )
) ) )  e. 
dom 
~~>  )
4527, 5, 36, 35, 44isumrecl 11303 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  e.  RR )
463nnzd 9264 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  ZZ )
47 fzofig 10309 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  x  e.  ZZ )  ->  ( 1..^ x )  e.  Fin )
482, 46, 47syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1..^ x )  e.  Fin )
49 elfzo1 10067 . . . . . . . . . . 11  |-  ( i  e.  ( 1..^ x )  <->  ( i  e.  NN  /\  x  e.  NN  /\  i  < 
x ) )
5049simp1bi 997 . . . . . . . . . 10  |-  ( i  e.  ( 1..^ x )  ->  i  e.  NN )
5150, 24sylan2 284 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  RR )
5248, 51fsumrecl 11275 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  e.  RR )
539a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
2  e.  RR+ )
5453, 46rpexpcld 10552 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 2 ^ x
)  e.  RR+ )
5554rpreccld 9592 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1  /  (
2 ^ x ) )  e.  RR+ )
5655rpred 9581 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1  /  (
2 ^ x ) )  e.  RR )
5720adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  G : NN --> { 0 ,  1 } )
5857, 3ffvelrnd 5596 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( G `  x
)  e.  { 0 ,  1 } )
5919, 58sseldi 3122 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( G `  x
)  e.  RR )
6056, 59remulcld 7887 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  e.  RR )
6114rpge0d 9585 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  0  <_  (
1  /  ( 2 ^ i ) ) )
62 0le0 8901 . . . . . . . . . . . . 13  |-  0  <_  0
63 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  0 )  -> 
( G `  i
)  =  0 )
6462, 63breqtrrid 3998 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  0 )  -> 
0  <_  ( G `  i ) )
65 0le1 8335 . . . . . . . . . . . . 13  |-  0  <_  1
66 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  1 )  -> 
( G `  i
)  =  1 )
6765, 66breqtrrid 3998 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  1 )  -> 
0  <_  ( G `  i ) )
68 elpri 3579 . . . . . . . . . . . . 13  |-  ( ( G `  i )  e.  { 0 ,  1 }  ->  (
( G `  i
)  =  0  \/  ( G `  i
)  =  1 ) )
6922, 68syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( G `
 i )  =  0  \/  ( G `
 i )  =  1 ) )
7064, 67, 69mpjaodan 788 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  0  <_  ( G `  i )
)
7115, 23, 61, 70mulge0d 8475 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  0  <_  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) )
7250, 71sylan2 284 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1..^ x ) )  ->  0  <_  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) )
7348, 51, 72fsumge0 11333 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <_  sum_ i  e.  ( 1..^ x ) ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
7455rpgt0d 9584 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( 1  /  ( 2 ^ x ) ) )
75 simprr 522 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( G `  x
)  =  1 )
7675oveq2d 5830 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  =  ( ( 1  /  ( 2 ^ x ) )  x.  1 ) )
7756recnd 7885 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1  /  (
2 ^ x ) )  e.  CC )
7877mulid1d 7874 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  1 )  =  ( 1  /  ( 2 ^ x ) ) )
7976, 78eqtrd 2187 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  =  ( 1  /  ( 2 ^ x ) ) )
8074, 79breqtrrd 3988 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( (
1  /  ( 2 ^ x ) )  x.  ( G `  x ) ) )
8152, 60, 73, 80addgegt0d 8373 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  +  ( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
) ) )
82 nfv 1505 . . . . . . . 8  |-  F/ i ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )
83 nfcv 2296 . . . . . . . 8  |-  F/_ i
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)
84 fzonel 10037 . . . . . . . . 9  |-  -.  x  e.  ( 1..^ x )
8584a1i 9 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  -.  x  e.  (
1..^ x ) )
8650, 41sylan2 284 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  CC )
87 oveq2 5822 . . . . . . . . . 10  |-  ( i  =  x  ->  (
2 ^ i )  =  ( 2 ^ x ) )
8887oveq2d 5830 . . . . . . . . 9  |-  ( i  =  x  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ x
) ) )
89 fveq2 5461 . . . . . . . . 9  |-  ( i  =  x  ->  ( G `  i )  =  ( G `  x ) )
9088, 89oveq12d 5832 . . . . . . . 8  |-  ( i  =  x  ->  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  =  ( ( 1  /  ( 2 ^ x ) )  x.  ( G `  x
) ) )
9160recnd 7885 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  e.  CC )
9282, 83, 48, 3, 85, 86, 90, 91fsumsplitsn 11284 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( ( 1..^ x )  u. 
{ x } ) ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  +  ( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
) ) )
9381, 92breqtrrd 3988 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  sum_ i  e.  ( ( 1..^ x )  u.  { x } ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) ) )
943nncnd 8826 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  CC )
95 1cnd 7873 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
1  e.  CC )
9694, 95pncand 8166 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( x  + 
1 )  -  1 )  =  x )
9796oveq2d 5830 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( 1 ... x ) )
983, 39eleqtrdi 2247 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  ( ZZ>= ` 
1 ) )
99 fzisfzounsn 10113 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  1
)  ->  ( 1 ... x )  =  ( ( 1..^ x )  u.  { x } ) )
10098, 99syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... x
)  =  ( ( 1..^ x )  u. 
{ x } ) )
10197, 100eqtrd 2187 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( ( 1..^ x )  u. 
{ x } ) )
102101sumeq1d 11240 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  =  sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
10393, 102breqtrrd 3988 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
10434, 15syldan 280 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
10534, 23syldan 280 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( G `  i )  e.  RR )
10634, 14syldan 280 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
107106rpge0d 9585 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  0  <_  (
1  /  ( 2 ^ i ) ) )
10834, 70syldan 280 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  0  <_  ( G `  i )
)
109104, 105, 107, 108mulge0d 8475 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  0  <_  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) )
11027, 5, 36, 35, 44, 109isumge0 11304 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <_  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
11126, 45, 103, 110addgtge0d 8374 . . . 4  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  +  sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) ) )
11239, 27, 4, 40, 41, 38isumsplit 11365 . . . 4  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  =  ( sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) ) ) )
113111, 112breqtrrd 3988 . . 3  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
114 nconstwlpolem0.a . . 3  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
115113, 114breqtrrdi 4002 . 2  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  A )
1161, 115rexlimddv 2576 1  |-  ( ph  ->  0  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1332    e. wcel 2125   E.wrex 2433    u. cun 3096    C_ wss 3098   {csn 3556   {cpr 3557   class class class wbr 3961    |-> cmpt 4021   dom cdm 4579   -->wf 5159   ` cfv 5163  (class class class)co 5814   Fincfn 6674   CCcc 7709   RRcr 7710   0cc0 7711   1c1 7712    + caddc 7714    x. cmul 7716    < clt 7891    <_ cle 7892    - cmin 8025    / cdiv 8524   NNcn 8812   2c2 8863   ZZcz 9146   ZZ>=cuz 9418   RR+crp 9538   ...cfz 9890  ..^cfzo 10019    seqcseq 10322   ^cexp 10396    ~~> cli 11152   sum_csu 11227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-en 6675  df-dom 6676  df-fin 6677  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-ico 9776  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-ihash 10627  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228
This theorem is referenced by:  nconstwlpolem  13584
  Copyright terms: Public domain W3C validator