Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolemgt0 Unicode version

Theorem nconstwlpolemgt0 16007
Description: Lemma for nconstwlpo 16009. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpolem0.g  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
nconstwlpolem0.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
nconstwlpolemgt0.0  |-  ( ph  ->  E. x  e.  NN  ( G `  x )  =  1 )
Assertion
Ref Expression
nconstwlpolemgt0  |-  ( ph  ->  0  <  A )
Distinct variable groups:    x, A    i, G    ph, i, x
Allowed substitution hints:    A( i)    G( x)

Proof of Theorem nconstwlpolemgt0
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nconstwlpolemgt0.0 . 2  |-  ( ph  ->  E. x  e.  NN  ( G `  x )  =  1 )
2 1zzd 9399 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
1  e.  ZZ )
3 simprl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  NN )
43peano2nnd 9051 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( x  +  1 )  e.  NN )
54nnzd 9494 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( x  +  1 )  e.  ZZ )
65, 2zsubcld 9500 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( x  + 
1 )  -  1 )  e.  ZZ )
72, 6fzfigd 10576 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  e.  Fin )
8 elfznn 10176 . . . . . . 7  |-  ( i  e.  ( 1 ... ( ( x  + 
1 )  -  1 ) )  ->  i  e.  NN )
9 2rp 9780 . . . . . . . . . . . 12  |-  2  e.  RR+
109a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  2  e.  RR+ )
11 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  i  e.  NN )
1211nnzd 9494 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  i  e.  ZZ )
1310, 12rpexpcld 10842 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
1413rpreccld 9829 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
1514rpred 9818 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
16 0re 8072 . . . . . . . . . 10  |-  0  e.  RR
17 1re 8071 . . . . . . . . . 10  |-  1  e.  RR
18 prssi 3791 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
1916, 17, 18mp2an 426 . . . . . . . . 9  |-  { 0 ,  1 }  C_  RR
20 nconstwlpolem0.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
2120ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  G : NN --> { 0 ,  1 } )
2221, 11ffvelcdmd 5716 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( G `  i )  e.  {
0 ,  1 } )
2319, 22sselid 3191 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( G `  i )  e.  RR )
2415, 23remulcld 8103 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  RR )
258, 24sylan2 286 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1 ... ( ( x  +  1 )  -  1 ) ) )  ->  ( (
1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  e.  RR )
267, 25fsumrecl 11712 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  e.  RR )
27 eqid 2205 . . . . . 6  |-  ( ZZ>= `  ( x  +  1
) )  =  (
ZZ>= `  ( x  + 
1 ) )
28 eqid 2205 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n
) ) )
29 oveq2 5952 . . . . . . . . 9  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
3029oveq2d 5960 . . . . . . . 8  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
31 fveq2 5576 . . . . . . . 8  |-  ( n  =  i  ->  ( G `  n )  =  ( G `  i ) )
3230, 31oveq12d 5962 . . . . . . 7  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( G `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
33 eluznn 9721 . . . . . . . 8  |-  ( ( ( x  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( x  +  1
) ) )  -> 
i  e.  NN )
344, 33sylan 283 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  i  e.  NN )
3534, 24syldan 282 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  RR )
3628, 32, 34, 35fvmptd3 5673 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
3720, 28trilpolemclim 15979 . . . . . . . 8  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n
) ) ) )  e.  dom  ~~>  )
3837adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( G `  n )
) ) )  e. 
dom 
~~>  )
39 nnuz 9684 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
4028, 32, 11, 24fvmptd3 5673 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
4124recnd 8101 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  CC )
4240, 41eqeltrd 2282 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) ) `
 i )  e.  CC )
4339, 4, 42iserex 11650 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
(  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n
) ) ) )  e.  dom  ~~>  <->  seq (
x  +  1 ) (  +  ,  ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( G `
 n ) ) ) )  e.  dom  ~~>  ) )
4438, 43mpbid 147 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  seq ( x  +  1 ) (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( G `  n )
) ) )  e. 
dom 
~~>  )
4527, 5, 36, 35, 44isumrecl 11740 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  e.  RR )
463nnzd 9494 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  ZZ )
47 fzofig 10577 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  x  e.  ZZ )  ->  ( 1..^ x )  e.  Fin )
482, 46, 47syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1..^ x )  e.  Fin )
49 elfzo1 10314 . . . . . . . . . . 11  |-  ( i  e.  ( 1..^ x )  <->  ( i  e.  NN  /\  x  e.  NN  /\  i  < 
x ) )
5049simp1bi 1015 . . . . . . . . . 10  |-  ( i  e.  ( 1..^ x )  ->  i  e.  NN )
5150, 24sylan2 286 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  RR )
5248, 51fsumrecl 11712 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  e.  RR )
539a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
2  e.  RR+ )
5453, 46rpexpcld 10842 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 2 ^ x
)  e.  RR+ )
5554rpreccld 9829 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1  /  (
2 ^ x ) )  e.  RR+ )
5655rpred 9818 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1  /  (
2 ^ x ) )  e.  RR )
5720adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  G : NN --> { 0 ,  1 } )
5857, 3ffvelcdmd 5716 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( G `  x
)  e.  { 0 ,  1 } )
5919, 58sselid 3191 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( G `  x
)  e.  RR )
6056, 59remulcld 8103 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  e.  RR )
6114rpge0d 9822 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  0  <_  (
1  /  ( 2 ^ i ) ) )
62 0le0 9125 . . . . . . . . . . . . 13  |-  0  <_  0
63 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  0 )  -> 
( G `  i
)  =  0 )
6462, 63breqtrrid 4082 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  0 )  -> 
0  <_  ( G `  i ) )
65 0le1 8554 . . . . . . . . . . . . 13  |-  0  <_  1
66 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  1 )  -> 
( G `  i
)  =  1 )
6765, 66breqtrrid 4082 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  1 )  -> 
0  <_  ( G `  i ) )
68 elpri 3656 . . . . . . . . . . . . 13  |-  ( ( G `  i )  e.  { 0 ,  1 }  ->  (
( G `  i
)  =  0  \/  ( G `  i
)  =  1 ) )
6922, 68syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( G `
 i )  =  0  \/  ( G `
 i )  =  1 ) )
7064, 67, 69mpjaodan 800 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  0  <_  ( G `  i )
)
7115, 23, 61, 70mulge0d 8694 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  0  <_  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) )
7250, 71sylan2 286 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1..^ x ) )  ->  0  <_  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) )
7348, 51, 72fsumge0 11770 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <_  sum_ i  e.  ( 1..^ x ) ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
7455rpgt0d 9821 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( 1  /  ( 2 ^ x ) ) )
75 simprr 531 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( G `  x
)  =  1 )
7675oveq2d 5960 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  =  ( ( 1  /  ( 2 ^ x ) )  x.  1 ) )
7756recnd 8101 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1  /  (
2 ^ x ) )  e.  CC )
7877mulridd 8089 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  1 )  =  ( 1  /  ( 2 ^ x ) ) )
7976, 78eqtrd 2238 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  =  ( 1  /  ( 2 ^ x ) ) )
8074, 79breqtrrd 4072 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( (
1  /  ( 2 ^ x ) )  x.  ( G `  x ) ) )
8152, 60, 73, 80addgegt0d 8592 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  +  ( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
) ) )
82 nfv 1551 . . . . . . . 8  |-  F/ i ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )
83 nfcv 2348 . . . . . . . 8  |-  F/_ i
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)
84 fzonel 10283 . . . . . . . . 9  |-  -.  x  e.  ( 1..^ x )
8584a1i 9 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  -.  x  e.  (
1..^ x ) )
8650, 41sylan2 286 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  CC )
87 oveq2 5952 . . . . . . . . . 10  |-  ( i  =  x  ->  (
2 ^ i )  =  ( 2 ^ x ) )
8887oveq2d 5960 . . . . . . . . 9  |-  ( i  =  x  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ x
) ) )
89 fveq2 5576 . . . . . . . . 9  |-  ( i  =  x  ->  ( G `  i )  =  ( G `  x ) )
9088, 89oveq12d 5962 . . . . . . . 8  |-  ( i  =  x  ->  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  =  ( ( 1  /  ( 2 ^ x ) )  x.  ( G `  x
) ) )
9160recnd 8101 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  e.  CC )
9282, 83, 48, 3, 85, 86, 90, 91fsumsplitsn 11721 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( ( 1..^ x )  u. 
{ x } ) ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  +  ( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
) ) )
9381, 92breqtrrd 4072 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  sum_ i  e.  ( ( 1..^ x )  u.  { x } ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) ) )
943nncnd 9050 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  CC )
95 1cnd 8088 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
1  e.  CC )
9694, 95pncand 8384 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( x  + 
1 )  -  1 )  =  x )
9796oveq2d 5960 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( 1 ... x ) )
983, 39eleqtrdi 2298 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  ( ZZ>= ` 
1 ) )
99 fzisfzounsn 10365 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  1
)  ->  ( 1 ... x )  =  ( ( 1..^ x )  u.  { x } ) )
10098, 99syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... x
)  =  ( ( 1..^ x )  u. 
{ x } ) )
10197, 100eqtrd 2238 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( ( 1..^ x )  u. 
{ x } ) )
102101sumeq1d 11677 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  =  sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
10393, 102breqtrrd 4072 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
10434, 15syldan 282 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
10534, 23syldan 282 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( G `  i )  e.  RR )
10634, 14syldan 282 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
107106rpge0d 9822 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  0  <_  (
1  /  ( 2 ^ i ) ) )
10834, 70syldan 282 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  0  <_  ( G `  i )
)
109104, 105, 107, 108mulge0d 8694 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  0  <_  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) )
11027, 5, 36, 35, 44, 109isumge0 11741 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <_  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
11126, 45, 103, 110addgtge0d 8593 . . . 4  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  +  sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) ) )
11239, 27, 4, 40, 41, 38isumsplit 11802 . . . 4  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  =  ( sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) ) ) )
113111, 112breqtrrd 4072 . . 3  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
114 nconstwlpolem0.a . . 3  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
115113, 114breqtrrdi 4086 . 2  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  A )
1161, 115rexlimddv 2628 1  |-  ( ph  ->  0  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176   E.wrex 2485    u. cun 3164    C_ wss 3166   {csn 3633   {cpr 3634   class class class wbr 4044    |-> cmpt 4105   dom cdm 4675   -->wf 5267   ` cfv 5271  (class class class)co 5944   Fincfn 6827   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108    - cmin 8243    / cdiv 8745   NNcn 9036   2c2 9087   ZZcz 9372   ZZ>=cuz 9648   RR+crp 9775   ...cfz 10130  ..^cfzo 10264    seqcseq 10592   ^cexp 10683    ~~> cli 11589   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-ico 10016  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  nconstwlpolem  16008
  Copyright terms: Public domain W3C validator