Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nconstwlpolemgt0 Unicode version

Theorem nconstwlpolemgt0 14095
Description: Lemma for nconstwlpo 14097. If one of the terms of series is positive, so is the sum. (Contributed by Jim Kingdon, 26-Jul-2024.)
Hypotheses
Ref Expression
nconstwlpolem0.g  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
nconstwlpolem0.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
nconstwlpolemgt0.0  |-  ( ph  ->  E. x  e.  NN  ( G `  x )  =  1 )
Assertion
Ref Expression
nconstwlpolemgt0  |-  ( ph  ->  0  <  A )
Distinct variable groups:    x, A    i, G    ph, i, x
Allowed substitution hints:    A( i)    G( x)

Proof of Theorem nconstwlpolemgt0
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nconstwlpolemgt0.0 . 2  |-  ( ph  ->  E. x  e.  NN  ( G `  x )  =  1 )
2 1zzd 9239 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
1  e.  ZZ )
3 simprl 526 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  NN )
43peano2nnd 8893 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( x  +  1 )  e.  NN )
54nnzd 9333 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( x  +  1 )  e.  ZZ )
65, 2zsubcld 9339 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( x  + 
1 )  -  1 )  e.  ZZ )
72, 6fzfigd 10387 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  e.  Fin )
8 elfznn 10010 . . . . . . 7  |-  ( i  e.  ( 1 ... ( ( x  + 
1 )  -  1 ) )  ->  i  e.  NN )
9 2rp 9615 . . . . . . . . . . . 12  |-  2  e.  RR+
109a1i 9 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  2  e.  RR+ )
11 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  i  e.  NN )
1211nnzd 9333 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  i  e.  ZZ )
1310, 12rpexpcld 10633 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( 2 ^ i )  e.  RR+ )
1413rpreccld 9664 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
1514rpred 9653 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
16 0re 7920 . . . . . . . . . 10  |-  0  e.  RR
17 1re 7919 . . . . . . . . . 10  |-  1  e.  RR
18 prssi 3738 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  { 0 ,  1 }  C_  RR )
1916, 17, 18mp2an 424 . . . . . . . . 9  |-  { 0 ,  1 }  C_  RR
20 nconstwlpolem0.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> { 0 ,  1 } )
2120ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  G : NN --> { 0 ,  1 } )
2221, 11ffvelrnd 5632 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( G `  i )  e.  {
0 ,  1 } )
2319, 22sselid 3145 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( G `  i )  e.  RR )
2415, 23remulcld 7950 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  RR )
258, 24sylan2 284 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1 ... ( ( x  +  1 )  -  1 ) ) )  ->  ( (
1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  e.  RR )
267, 25fsumrecl 11364 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  e.  RR )
27 eqid 2170 . . . . . 6  |-  ( ZZ>= `  ( x  +  1
) )  =  (
ZZ>= `  ( x  + 
1 ) )
28 eqid 2170 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) )  =  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n
) ) )
29 oveq2 5861 . . . . . . . . 9  |-  ( n  =  i  ->  (
2 ^ n )  =  ( 2 ^ i ) )
3029oveq2d 5869 . . . . . . . 8  |-  ( n  =  i  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ i
) ) )
31 fveq2 5496 . . . . . . . 8  |-  ( n  =  i  ->  ( G `  n )  =  ( G `  i ) )
3230, 31oveq12d 5871 . . . . . . 7  |-  ( n  =  i  ->  (
( 1  /  (
2 ^ n ) )  x.  ( G `
 n ) )  =  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
33 eluznn 9559 . . . . . . . 8  |-  ( ( ( x  +  1 )  e.  NN  /\  i  e.  ( ZZ>= `  ( x  +  1
) ) )  -> 
i  e.  NN )
344, 33sylan 281 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  i  e.  NN )
3534, 24syldan 280 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  RR )
3628, 32, 34, 35fvmptd3 5589 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
3720, 28trilpolemclim 14068 . . . . . . . 8  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n
) ) ) )  e.  dom  ~~>  )
3837adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  seq 1 (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( G `  n )
) ) )  e. 
dom 
~~>  )
39 nnuz 9522 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
4028, 32, 11, 24fvmptd3 5589 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) ) `
 i )  =  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
4124recnd 7948 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  CC )
4240, 41eqeltrd 2247 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n ) ) ) `
 i )  e.  CC )
4339, 4, 42iserex 11302 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
(  seq 1 (  +  ,  ( n  e.  NN  |->  ( ( 1  /  ( 2 ^ n ) )  x.  ( G `  n
) ) ) )  e.  dom  ~~>  <->  seq (
x  +  1 ) (  +  ,  ( n  e.  NN  |->  ( ( 1  /  (
2 ^ n ) )  x.  ( G `
 n ) ) ) )  e.  dom  ~~>  ) )
4438, 43mpbid 146 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  seq ( x  +  1 ) (  +  , 
( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( G `  n )
) ) )  e. 
dom 
~~>  )
4527, 5, 36, 35, 44isumrecl 11392 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  e.  RR )
463nnzd 9333 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  ZZ )
47 fzofig 10388 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  x  e.  ZZ )  ->  ( 1..^ x )  e.  Fin )
482, 46, 47syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1..^ x )  e.  Fin )
49 elfzo1 10146 . . . . . . . . . . 11  |-  ( i  e.  ( 1..^ x )  <->  ( i  e.  NN  /\  x  e.  NN  /\  i  < 
x ) )
5049simp1bi 1007 . . . . . . . . . 10  |-  ( i  e.  ( 1..^ x )  ->  i  e.  NN )
5150, 24sylan2 284 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  RR )
5248, 51fsumrecl 11364 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  e.  RR )
539a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
2  e.  RR+ )
5453, 46rpexpcld 10633 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 2 ^ x
)  e.  RR+ )
5554rpreccld 9664 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1  /  (
2 ^ x ) )  e.  RR+ )
5655rpred 9653 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1  /  (
2 ^ x ) )  e.  RR )
5720adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  G : NN --> { 0 ,  1 } )
5857, 3ffvelrnd 5632 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( G `  x
)  e.  { 0 ,  1 } )
5919, 58sselid 3145 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( G `  x
)  e.  RR )
6056, 59remulcld 7950 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  e.  RR )
6114rpge0d 9657 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  0  <_  (
1  /  ( 2 ^ i ) ) )
62 0le0 8967 . . . . . . . . . . . . 13  |-  0  <_  0
63 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  0 )  -> 
( G `  i
)  =  0 )
6462, 63breqtrrid 4027 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  0 )  -> 
0  <_  ( G `  i ) )
65 0le1 8400 . . . . . . . . . . . . 13  |-  0  <_  1
66 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  1 )  -> 
( G `  i
)  =  1 )
6765, 66breqtrrid 4027 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  ( G `  x
)  =  1 ) )  /\  i  e.  NN )  /\  ( G `  i )  =  1 )  -> 
0  <_  ( G `  i ) )
68 elpri 3606 . . . . . . . . . . . . 13  |-  ( ( G `  i )  e.  { 0 ,  1 }  ->  (
( G `  i
)  =  0  \/  ( G `  i
)  =  1 ) )
6922, 68syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  ( ( G `
 i )  =  0  \/  ( G `
 i )  =  1 ) )
7064, 67, 69mpjaodan 793 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  0  <_  ( G `  i )
)
7115, 23, 61, 70mulge0d 8540 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  NN )  ->  0  <_  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) )
7250, 71sylan2 284 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1..^ x ) )  ->  0  <_  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) )
7348, 51, 72fsumge0 11422 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <_  sum_ i  e.  ( 1..^ x ) ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
7455rpgt0d 9656 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( 1  /  ( 2 ^ x ) ) )
75 simprr 527 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( G `  x
)  =  1 )
7675oveq2d 5869 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  =  ( ( 1  /  ( 2 ^ x ) )  x.  1 ) )
7756recnd 7948 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1  /  (
2 ^ x ) )  e.  CC )
7877mulid1d 7937 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  1 )  =  ( 1  /  ( 2 ^ x ) ) )
7976, 78eqtrd 2203 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  =  ( 1  /  ( 2 ^ x ) ) )
8074, 79breqtrrd 4017 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( (
1  /  ( 2 ^ x ) )  x.  ( G `  x ) ) )
8152, 60, 73, 80addgegt0d 8438 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  +  ( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
) ) )
82 nfv 1521 . . . . . . . 8  |-  F/ i ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )
83 nfcv 2312 . . . . . . . 8  |-  F/_ i
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)
84 fzonel 10116 . . . . . . . . 9  |-  -.  x  e.  ( 1..^ x )
8584a1i 9 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  -.  x  e.  (
1..^ x ) )
8650, 41sylan2 284 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  ( 1..^ x ) )  ->  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  e.  CC )
87 oveq2 5861 . . . . . . . . . 10  |-  ( i  =  x  ->  (
2 ^ i )  =  ( 2 ^ x ) )
8887oveq2d 5869 . . . . . . . . 9  |-  ( i  =  x  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ x
) ) )
89 fveq2 5496 . . . . . . . . 9  |-  ( i  =  x  ->  ( G `  i )  =  ( G `  x ) )
9088, 89oveq12d 5871 . . . . . . . 8  |-  ( i  =  x  ->  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  =  ( ( 1  /  ( 2 ^ x ) )  x.  ( G `  x
) ) )
9160recnd 7948 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
)  e.  CC )
9282, 83, 48, 3, 85, 86, 90, 91fsumsplitsn 11373 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( ( 1..^ x )  u. 
{ x } ) ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)  =  ( sum_ i  e.  ( 1..^ x ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) )  +  ( ( 1  / 
( 2 ^ x
) )  x.  ( G `  x )
) ) )
9381, 92breqtrrd 4017 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  sum_ i  e.  ( ( 1..^ x )  u.  { x } ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) ) )
943nncnd 8892 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  CC )
95 1cnd 7936 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
1  e.  CC )
9694, 95pncand 8231 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( ( x  + 
1 )  -  1 )  =  x )
9796oveq2d 5869 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( 1 ... x ) )
983, 39eleqtrdi 2263 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  x  e.  ( ZZ>= ` 
1 ) )
99 fzisfzounsn 10192 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  1
)  ->  ( 1 ... x )  =  ( ( 1..^ x )  u.  { x } ) )
10098, 99syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... x
)  =  ( ( 1..^ x )  u. 
{ x } ) )
10197, 100eqtrd 2203 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
( 1 ... (
( x  +  1 )  -  1 ) )  =  ( ( 1..^ x )  u. 
{ x } ) )
102101sumeq1d 11329 . . . . . 6  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  =  sum_ i  e.  ( ( 1..^ x )  u.  { x }
) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
10393, 102breqtrrd 4017 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
10434, 15syldan 280 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR )
10534, 23syldan 280 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( G `  i )  e.  RR )
10634, 14syldan 280 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  ( 1  / 
( 2 ^ i
) )  e.  RR+ )
107106rpge0d 9657 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  0  <_  (
1  /  ( 2 ^ i ) ) )
10834, 70syldan 280 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  0  <_  ( G `  i )
)
109104, 105, 107, 108mulge0d 8540 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  ( G `  x )  =  1 ) )  /\  i  e.  (
ZZ>= `  ( x  + 
1 ) ) )  ->  0  <_  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) )
11027, 5, 36, 35, 44, 109isumge0 11393 . . . . 5  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <_  sum_ i  e.  ( ZZ>= `  ( x  +  1 ) ) ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
) )
11126, 45, 103, 110addgtge0d 8439 . . . 4  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  ( sum_ i  e.  ( 1 ... ( ( x  +  1 )  - 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  +  sum_ i  e.  (
ZZ>= `  ( x  + 
1 ) ) ( ( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) ) ) )
11239, 27, 4, 40, 41, 38isumsplit 11454 . . . 4  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  ->  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( G `
 i ) )  =  ( sum_ i  e.  ( 1 ... (
( x  +  1 )  -  1 ) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) )  +  sum_ i  e.  ( ZZ>= `  ( x  +  1
) ) ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i ) ) ) )
113111, 112breqtrrd 4017 . . 3  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( G `  i
) ) )
114 nconstwlpolem0.a . . 3  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( G `  i )
)
115113, 114breqtrrdi 4031 . 2  |-  ( (
ph  /\  ( x  e.  NN  /\  ( G `
 x )  =  1 ) )  -> 
0  <  A )
1161, 115rexlimddv 2592 1  |-  ( ph  ->  0  <  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141   E.wrex 2449    u. cun 3119    C_ wss 3121   {csn 3583   {cpr 3584   class class class wbr 3989    |-> cmpt 4050   dom cdm 4611   -->wf 5194   ` cfv 5198  (class class class)co 5853   Fincfn 6718   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    - cmin 8090    / cdiv 8589   NNcn 8878   2c2 8929   ZZcz 9212   ZZ>=cuz 9487   RR+crp 9610   ...cfz 9965  ..^cfzo 10098    seqcseq 10401   ^cexp 10475    ~~> cli 11241   sum_csu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  nconstwlpolem  14096
  Copyright terms: Public domain W3C validator