ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpabscxpbnd Unicode version

Theorem rpabscxpbnd 13992
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
Hypotheses
Ref Expression
rpabscxpbnd.1  |-  ( ph  ->  A  e.  RR+ )
abscxpbnd.2  |-  ( ph  ->  B  e.  CC )
rpabscxpbnd.3  |-  ( ph  ->  0  <  ( Re
`  B ) )
abscxpbnd.4  |-  ( ph  ->  M  e.  RR )
abscxpbnd.5  |-  ( ph  ->  ( abs `  A
)  <_  M )
Assertion
Ref Expression
rpabscxpbnd  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )

Proof of Theorem rpabscxpbnd
StepHypRef Expression
1 rpabscxpbnd.1 . . . . 5  |-  ( ph  ->  A  e.  RR+ )
2 abscxpbnd.2 . . . . 5  |-  ( ph  ->  B  e.  CC )
3 rpcxpef 13948 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
41, 2, 3syl2anc 411 . . . 4  |-  ( ph  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A
) ) ) )
54fveq2d 5514 . . 3  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  =  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) ) )
61relogcld 13936 . . . . . 6  |-  ( ph  ->  ( log `  A
)  e.  RR )
76recnd 7963 . . . . 5  |-  ( ph  ->  ( log `  A
)  e.  CC )
82, 7mulcld 7955 . . . 4  |-  ( ph  ->  ( B  x.  ( log `  A ) )  e.  CC )
9 absef 11748 . . . 4  |-  ( ( B  x.  ( log `  A ) )  e.  CC  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) ) )
108, 9syl 14 . . 3  |-  ( ph  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) ) )
112recld 10918 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  RR )
127recld 10918 . . . . . . 7  |-  ( ph  ->  ( Re `  ( log `  A ) )  e.  RR )
1311, 12remulcld 7965 . . . . . 6  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  RR )
1413recnd 7963 . . . . 5  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC )
152imcld 10919 . . . . . . 7  |-  ( ph  ->  ( Im `  B
)  e.  RR )
167imcld 10919 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  RR )
1716renegcld 8314 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  ( log `  A ) )  e.  RR )
1815, 17remulcld 7965 . . . . . 6  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR )
1918recnd 7963 . . . . 5  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )
20 efadd 11654 . . . . 5  |-  ( ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC  /\  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )  -> 
( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
2114, 19, 20syl2anc 411 . . . 4  |-  ( ph  ->  ( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
2215, 16remulcld 7965 . . . . . . . 8  |-  ( ph  ->  ( ( Im `  B )  x.  (
Im `  ( log `  A ) ) )  e.  RR )
2322recnd 7963 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  (
Im `  ( log `  A ) ) )  e.  CC )
2414, 23negsubd 8251 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  -u (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) )  =  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  -  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
2515recnd 7963 . . . . . . . 8  |-  ( ph  ->  ( Im `  B
)  e.  CC )
2616recnd 7963 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  CC )
2725, 26mulneg2d 8346 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  =  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) )
2827oveq2d 5884 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  -u (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
292, 7remuld 10943 . . . . . 6  |-  ( ph  ->  ( Re `  ( B  x.  ( log `  A ) ) )  =  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  -  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
3024, 28, 293eqtr4d 2220 . . . . 5  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( Re `  ( B  x.  ( log `  A ) ) ) )
3130fveq2d 5514 . . . 4  |-  ( ph  ->  ( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) ) )
326rered 10949 . . . . . . . . 9  |-  ( ph  ->  ( Re `  ( log `  A ) )  =  ( log `  A
) )
331rpred 9670 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
341rpge0d 9674 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
3533, 34absidd 11147 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  =  A )
3635fveq2d 5514 . . . . . . . . 9  |-  ( ph  ->  ( log `  ( abs `  A ) )  =  ( log `  A
) )
3732, 36eqtr4d 2213 . . . . . . . 8  |-  ( ph  ->  ( Re `  ( log `  A ) )  =  ( log `  ( abs `  A ) ) )
3837oveq2d 5884 . . . . . . 7  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  =  ( ( Re
`  B )  x.  ( log `  ( abs `  A ) ) ) )
3938fveq2d 5514 . . . . . 6  |-  ( ph  ->  ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  =  ( exp `  (
( Re `  B
)  x.  ( log `  ( abs `  A
) ) ) ) )
4035, 1eqeltrd 2254 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
4111recnd 7963 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  CC )
42 rpcxpef 13948 . . . . . . 7  |-  ( ( ( abs `  A
)  e.  RR+  /\  (
Re `  B )  e.  CC )  ->  (
( abs `  A
)  ^c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
4340, 41, 42syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
4439, 43eqtr4d 2213 . . . . 5  |-  ( ph  ->  ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  =  ( ( abs `  A )  ^c 
( Re `  B
) ) )
4544oveq1d 5883 . . . 4  |-  ( ph  ->  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
4621, 31, 453eqtr3d 2218 . . 3  |-  ( ph  ->  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) )  =  ( ( ( abs `  A )  ^c  ( Re
`  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
475, 10, 463eqtrd 2214 . 2  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
4840, 11rpcxpcld 13985 . . . . 5  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  e.  RR+ )
4948rpred 9670 . . . 4  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  e.  RR )
5018reefcld 11648 . . . 4  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  e.  RR )
5149, 50remulcld 7965 . . 3  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  e.  RR )
52 abscxpbnd.4 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
53 abscxpbnd.5 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  <_  M )
5452, 40, 53rpgecld 9710 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
5554, 11rpcxpcld 13985 . . . . 5  |-  ( ph  ->  ( M  ^c 
( Re `  B
) )  e.  RR+ )
5655rpred 9670 . . . 4  |-  ( ph  ->  ( M  ^c 
( Re `  B
) )  e.  RR )
5756, 50remulcld 7965 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  e.  RR )
582abscld 11161 . . . . . 6  |-  ( ph  ->  ( abs `  B
)  e.  RR )
59 pire 13840 . . . . . 6  |-  pi  e.  RR
60 remulcl 7917 . . . . . 6  |-  ( ( ( abs `  B
)  e.  RR  /\  pi  e.  RR )  -> 
( ( abs `  B
)  x.  pi )  e.  RR )
6158, 59, 60sylancl 413 . . . . 5  |-  ( ph  ->  ( ( abs `  B
)  x.  pi )  e.  RR )
6261reefcld 11648 . . . 4  |-  ( ph  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR )
6356, 62remulcld 7965 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) )  e.  RR )
6418rpefcld 11665 . . . . 5  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  e.  RR+ )
6564rpge0d 9674 . . . 4  |-  ( ph  ->  0  <_  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )
661rpcnd 9672 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
671rpap0d 9676 . . . . . . 7  |-  ( ph  ->  A #  0 )
6866, 67absrpclapd 11168 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
6952, 68, 53rpgecld 9710 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
70 rpabscxpbnd.3 . . . . . . 7  |-  ( ph  ->  0  <  ( Re
`  B ) )
7111, 70elrpd 9667 . . . . . 6  |-  ( ph  ->  ( Re `  B
)  e.  RR+ )
72 rpcxple2 13971 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR+  /\  M  e.  RR+  /\  ( Re
`  B )  e.  RR+ )  ->  ( ( abs `  A )  <_  M  <->  ( ( abs `  A )  ^c  ( Re `  B ) )  <_ 
( M  ^c 
( Re `  B
) ) ) )
7368, 69, 71, 72syl3anc 1238 . . . . 5  |-  ( ph  ->  ( ( abs `  A
)  <_  M  <->  ( ( abs `  A )  ^c  ( Re `  B ) )  <_ 
( M  ^c 
( Re `  B
) ) ) )
7453, 73mpbid 147 . . . 4  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  <_  ( M  ^c  ( Re `  B ) ) )
7549, 56, 50, 65, 74lemul1ad 8872 . . 3  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
7655rpge0d 9674 . . . 4  |-  ( ph  ->  0  <_  ( M  ^c  ( Re `  B ) ) )
7725abscld 11161 . . . . . . 7  |-  ( ph  ->  ( abs `  (
Im `  B )
)  e.  RR )
7817recnd 7963 . . . . . . . 8  |-  ( ph  -> 
-u ( Im `  ( log `  A ) )  e.  CC )
7978abscld 11161 . . . . . . 7  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  e.  RR )
8077, 79remulcld 7965 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
8118leabsd 11141 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )
8225, 78absmuld 11174 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  =  ( ( abs `  ( Im
`  B ) )  x.  ( abs `  -u (
Im `  ( log `  A ) ) ) ) )
8381, 82breqtrd 4026 . . . . . 6  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  ( Im `  B
) )  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
8458, 79remulcld 7965 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
8578absge0d 11164 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  -u ( Im `  ( log `  A ) ) ) )
86 absimle 11064 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( abs `  ( Im `  B ) )  <_ 
( abs `  B
) )
872, 86syl 14 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
Im `  B )
)  <_  ( abs `  B ) )
8877, 58, 79, 85, 87lemul1ad 8872 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
8959a1i 9 . . . . . . . 8  |-  ( ph  ->  pi  e.  RR )
902absge0d 11164 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  B ) )
9126absnegd 11169 . . . . . . . . 9  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  =  ( abs `  (
Im `  ( log `  A ) ) ) )
9259renegcli 8196 . . . . . . . . . . . 12  |-  -u pi  e.  RR
93 0re 7935 . . . . . . . . . . . 12  |-  0  e.  RR
94 pipos 13842 . . . . . . . . . . . . 13  |-  0  <  pi
95 lt0neg2 8403 . . . . . . . . . . . . . 14  |-  ( pi  e.  RR  ->  (
0  <  pi  <->  -u pi  <  0 ) )
9659, 95ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0  <  pi  <->  -u pi  <  0 )
9794, 96mpbi 145 . . . . . . . . . . . 12  |-  -u pi  <  0
9892, 93, 97ltleii 8037 . . . . . . . . . . 11  |-  -u pi  <_  0
996reim0d 10950 . . . . . . . . . . 11  |-  ( ph  ->  ( Im `  ( log `  A ) )  =  0 )
10098, 99breqtrrid 4038 . . . . . . . . . 10  |-  ( ph  -> 
-u pi  <_  (
Im `  ( log `  A ) ) )
10193, 59, 94ltleii 8037 . . . . . . . . . . 11  |-  0  <_  pi
10299, 101eqbrtrdi 4039 . . . . . . . . . 10  |-  ( ph  ->  ( Im `  ( log `  A ) )  <_  pi )
103 absle 11069 . . . . . . . . . . 11  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
10416, 59, 103sylancl 413 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
105100, 102, 104mpbir2and 944 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
Im `  ( log `  A ) ) )  <_  pi )
10691, 105eqbrtrd 4022 . . . . . . . 8  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  <_  pi )
10779, 89, 58, 90, 106lemul2ad 8873 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
10880, 84, 61, 88, 107letrd 8058 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
10918, 80, 61, 83, 108letrd 8058 . . . . 5  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi ) )
110 efle 13830 . . . . . 6  |-  ( ( ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR  /\  (
( abs `  B
)  x.  pi )  e.  RR )  -> 
( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
11118, 61, 110syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
112109, 111mpbid 147 . . . 4  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) )
11350, 62, 56, 76, 112lemul2ad 8873 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  <_  (
( M  ^c 
( Re `  B
) )  x.  ( exp `  ( ( abs `  B )  x.  pi ) ) ) )
11451, 57, 63, 75, 113letrd 8058 . 2  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
11547, 114eqbrtrd 4022 1  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5211  (class class class)co 5868   CCcc 7787   RRcr 7788   0cc0 7789    + caddc 7792    x. cmul 7794    < clt 7969    <_ cle 7970    - cmin 8105   -ucneg 8106   RR+crp 9627   Recre 10820   Imcim 10821   abscabs 10977   expce 11621   picpi 11626   logclog 13910    ^c ccxp 13911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-iinf 4583  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-mulrcl 7888  ax-addcom 7889  ax-mulcom 7890  ax-addass 7891  ax-mulass 7892  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-1rid 7896  ax-0id 7897  ax-rnegex 7898  ax-precex 7899  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-apti 7904  ax-pre-ltadd 7905  ax-pre-mulgt0 7906  ax-pre-mulext 7907  ax-arch 7908  ax-caucvg 7909  ax-pre-suploc 7910  ax-addf 7911  ax-mulf 7912
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4289  df-po 4292  df-iso 4293  df-iord 4362  df-on 4364  df-ilim 4365  df-suc 4367  df-iom 4586  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-f1 5216  df-fo 5217  df-f1o 5218  df-fv 5219  df-isom 5220  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-of 6076  df-1st 6134  df-2nd 6135  df-recs 6299  df-irdg 6364  df-frec 6385  df-1o 6410  df-oadd 6414  df-er 6528  df-map 6643  df-pm 6644  df-en 6734  df-dom 6735  df-fin 6736  df-sup 6976  df-inf 6977  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-reap 8509  df-ap 8516  df-div 8606  df-inn 8896  df-2 8954  df-3 8955  df-4 8956  df-5 8957  df-6 8958  df-7 8959  df-8 8960  df-9 8961  df-n0 9153  df-z 9230  df-uz 9505  df-q 9596  df-rp 9628  df-xneg 9746  df-xadd 9747  df-ioo 9866  df-ioc 9867  df-ico 9868  df-icc 9869  df-fz 9983  df-fzo 10116  df-seqfrec 10419  df-exp 10493  df-fac 10677  df-bc 10699  df-ihash 10727  df-shft 10795  df-cj 10822  df-re 10823  df-im 10824  df-rsqrt 10978  df-abs 10979  df-clim 11258  df-sumdc 11333  df-ef 11627  df-e 11628  df-sin 11629  df-cos 11630  df-pi 11632  df-rest 12625  df-topgen 12644  df-psmet 13120  df-xmet 13121  df-met 13122  df-bl 13123  df-mopn 13124  df-top 13129  df-topon 13142  df-bases 13174  df-ntr 13229  df-cn 13321  df-cnp 13322  df-tx 13386  df-cncf 13691  df-limced 13758  df-dvap 13759  df-relog 13912  df-rpcxp 13913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator