ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpabscxpbnd Unicode version

Theorem rpabscxpbnd 15614
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
Hypotheses
Ref Expression
rpabscxpbnd.1  |-  ( ph  ->  A  e.  RR+ )
abscxpbnd.2  |-  ( ph  ->  B  e.  CC )
rpabscxpbnd.3  |-  ( ph  ->  0  <  ( Re
`  B ) )
abscxpbnd.4  |-  ( ph  ->  M  e.  RR )
abscxpbnd.5  |-  ( ph  ->  ( abs `  A
)  <_  M )
Assertion
Ref Expression
rpabscxpbnd  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )

Proof of Theorem rpabscxpbnd
StepHypRef Expression
1 rpabscxpbnd.1 . . . . 5  |-  ( ph  ->  A  e.  RR+ )
2 abscxpbnd.2 . . . . 5  |-  ( ph  ->  B  e.  CC )
3 rpcxpef 15568 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
41, 2, 3syl2anc 411 . . . 4  |-  ( ph  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A
) ) ) )
54fveq2d 5631 . . 3  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  =  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) ) )
61relogcld 15556 . . . . . 6  |-  ( ph  ->  ( log `  A
)  e.  RR )
76recnd 8175 . . . . 5  |-  ( ph  ->  ( log `  A
)  e.  CC )
82, 7mulcld 8167 . . . 4  |-  ( ph  ->  ( B  x.  ( log `  A ) )  e.  CC )
9 absef 12281 . . . 4  |-  ( ( B  x.  ( log `  A ) )  e.  CC  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) ) )
108, 9syl 14 . . 3  |-  ( ph  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) ) )
112recld 11449 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  RR )
127recld 11449 . . . . . . 7  |-  ( ph  ->  ( Re `  ( log `  A ) )  e.  RR )
1311, 12remulcld 8177 . . . . . 6  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  RR )
1413recnd 8175 . . . . 5  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC )
152imcld 11450 . . . . . . 7  |-  ( ph  ->  ( Im `  B
)  e.  RR )
167imcld 11450 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  RR )
1716renegcld 8526 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  ( log `  A ) )  e.  RR )
1815, 17remulcld 8177 . . . . . 6  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR )
1918recnd 8175 . . . . 5  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )
20 efadd 12186 . . . . 5  |-  ( ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC  /\  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )  -> 
( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
2114, 19, 20syl2anc 411 . . . 4  |-  ( ph  ->  ( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
2215, 16remulcld 8177 . . . . . . . 8  |-  ( ph  ->  ( ( Im `  B )  x.  (
Im `  ( log `  A ) ) )  e.  RR )
2322recnd 8175 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  (
Im `  ( log `  A ) ) )  e.  CC )
2414, 23negsubd 8463 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  -u (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) )  =  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  -  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
2515recnd 8175 . . . . . . . 8  |-  ( ph  ->  ( Im `  B
)  e.  CC )
2616recnd 8175 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  CC )
2725, 26mulneg2d 8558 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  =  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) )
2827oveq2d 6017 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  -u (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
292, 7remuld 11474 . . . . . 6  |-  ( ph  ->  ( Re `  ( B  x.  ( log `  A ) ) )  =  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  -  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
3024, 28, 293eqtr4d 2272 . . . . 5  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( Re `  ( B  x.  ( log `  A ) ) ) )
3130fveq2d 5631 . . . 4  |-  ( ph  ->  ( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) ) )
326rered 11480 . . . . . . . . 9  |-  ( ph  ->  ( Re `  ( log `  A ) )  =  ( log `  A
) )
331rpred 9892 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
341rpge0d 9896 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
3533, 34absidd 11678 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  =  A )
3635fveq2d 5631 . . . . . . . . 9  |-  ( ph  ->  ( log `  ( abs `  A ) )  =  ( log `  A
) )
3732, 36eqtr4d 2265 . . . . . . . 8  |-  ( ph  ->  ( Re `  ( log `  A ) )  =  ( log `  ( abs `  A ) ) )
3837oveq2d 6017 . . . . . . 7  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  =  ( ( Re
`  B )  x.  ( log `  ( abs `  A ) ) ) )
3938fveq2d 5631 . . . . . 6  |-  ( ph  ->  ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  =  ( exp `  (
( Re `  B
)  x.  ( log `  ( abs `  A
) ) ) ) )
4035, 1eqeltrd 2306 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
4111recnd 8175 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  CC )
42 rpcxpef 15568 . . . . . . 7  |-  ( ( ( abs `  A
)  e.  RR+  /\  (
Re `  B )  e.  CC )  ->  (
( abs `  A
)  ^c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
4340, 41, 42syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
4439, 43eqtr4d 2265 . . . . 5  |-  ( ph  ->  ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  =  ( ( abs `  A )  ^c 
( Re `  B
) ) )
4544oveq1d 6016 . . . 4  |-  ( ph  ->  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
4621, 31, 453eqtr3d 2270 . . 3  |-  ( ph  ->  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) )  =  ( ( ( abs `  A )  ^c  ( Re
`  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
475, 10, 463eqtrd 2266 . 2  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
4840, 11rpcxpcld 15607 . . . . 5  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  e.  RR+ )
4948rpred 9892 . . . 4  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  e.  RR )
5018reefcld 12180 . . . 4  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  e.  RR )
5149, 50remulcld 8177 . . 3  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  e.  RR )
52 abscxpbnd.4 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
53 abscxpbnd.5 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  <_  M )
5452, 40, 53rpgecld 9932 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
5554, 11rpcxpcld 15607 . . . . 5  |-  ( ph  ->  ( M  ^c 
( Re `  B
) )  e.  RR+ )
5655rpred 9892 . . . 4  |-  ( ph  ->  ( M  ^c 
( Re `  B
) )  e.  RR )
5756, 50remulcld 8177 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  e.  RR )
582abscld 11692 . . . . . 6  |-  ( ph  ->  ( abs `  B
)  e.  RR )
59 pire 15460 . . . . . 6  |-  pi  e.  RR
60 remulcl 8127 . . . . . 6  |-  ( ( ( abs `  B
)  e.  RR  /\  pi  e.  RR )  -> 
( ( abs `  B
)  x.  pi )  e.  RR )
6158, 59, 60sylancl 413 . . . . 5  |-  ( ph  ->  ( ( abs `  B
)  x.  pi )  e.  RR )
6261reefcld 12180 . . . 4  |-  ( ph  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR )
6356, 62remulcld 8177 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) )  e.  RR )
6418rpefcld 12197 . . . . 5  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  e.  RR+ )
6564rpge0d 9896 . . . 4  |-  ( ph  ->  0  <_  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )
661rpcnd 9894 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
671rpap0d 9898 . . . . . . 7  |-  ( ph  ->  A #  0 )
6866, 67absrpclapd 11699 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
6952, 68, 53rpgecld 9932 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
70 rpabscxpbnd.3 . . . . . . 7  |-  ( ph  ->  0  <  ( Re
`  B ) )
7111, 70elrpd 9889 . . . . . 6  |-  ( ph  ->  ( Re `  B
)  e.  RR+ )
72 rpcxple2 15592 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR+  /\  M  e.  RR+  /\  ( Re
`  B )  e.  RR+ )  ->  ( ( abs `  A )  <_  M  <->  ( ( abs `  A )  ^c  ( Re `  B ) )  <_ 
( M  ^c 
( Re `  B
) ) ) )
7368, 69, 71, 72syl3anc 1271 . . . . 5  |-  ( ph  ->  ( ( abs `  A
)  <_  M  <->  ( ( abs `  A )  ^c  ( Re `  B ) )  <_ 
( M  ^c 
( Re `  B
) ) ) )
7453, 73mpbid 147 . . . 4  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  <_  ( M  ^c  ( Re `  B ) ) )
7549, 56, 50, 65, 74lemul1ad 9086 . . 3  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
7655rpge0d 9896 . . . 4  |-  ( ph  ->  0  <_  ( M  ^c  ( Re `  B ) ) )
7725abscld 11692 . . . . . . 7  |-  ( ph  ->  ( abs `  (
Im `  B )
)  e.  RR )
7817recnd 8175 . . . . . . . 8  |-  ( ph  -> 
-u ( Im `  ( log `  A ) )  e.  CC )
7978abscld 11692 . . . . . . 7  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  e.  RR )
8077, 79remulcld 8177 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
8118leabsd 11672 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )
8225, 78absmuld 11705 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  =  ( ( abs `  ( Im
`  B ) )  x.  ( abs `  -u (
Im `  ( log `  A ) ) ) ) )
8381, 82breqtrd 4109 . . . . . 6  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  ( Im `  B
) )  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
8458, 79remulcld 8177 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
8578absge0d 11695 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  -u ( Im `  ( log `  A ) ) ) )
86 absimle 11595 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( abs `  ( Im `  B ) )  <_ 
( abs `  B
) )
872, 86syl 14 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
Im `  B )
)  <_  ( abs `  B ) )
8877, 58, 79, 85, 87lemul1ad 9086 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
8959a1i 9 . . . . . . . 8  |-  ( ph  ->  pi  e.  RR )
902absge0d 11695 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  B ) )
9126absnegd 11700 . . . . . . . . 9  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  =  ( abs `  (
Im `  ( log `  A ) ) ) )
9259renegcli 8408 . . . . . . . . . . . 12  |-  -u pi  e.  RR
93 0re 8146 . . . . . . . . . . . 12  |-  0  e.  RR
94 pipos 15462 . . . . . . . . . . . . 13  |-  0  <  pi
95 lt0neg2 8616 . . . . . . . . . . . . . 14  |-  ( pi  e.  RR  ->  (
0  <  pi  <->  -u pi  <  0 ) )
9659, 95ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0  <  pi  <->  -u pi  <  0 )
9794, 96mpbi 145 . . . . . . . . . . . 12  |-  -u pi  <  0
9892, 93, 97ltleii 8249 . . . . . . . . . . 11  |-  -u pi  <_  0
996reim0d 11481 . . . . . . . . . . 11  |-  ( ph  ->  ( Im `  ( log `  A ) )  =  0 )
10098, 99breqtrrid 4121 . . . . . . . . . 10  |-  ( ph  -> 
-u pi  <_  (
Im `  ( log `  A ) ) )
10193, 59, 94ltleii 8249 . . . . . . . . . . 11  |-  0  <_  pi
10299, 101eqbrtrdi 4122 . . . . . . . . . 10  |-  ( ph  ->  ( Im `  ( log `  A ) )  <_  pi )
103 absle 11600 . . . . . . . . . . 11  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
10416, 59, 103sylancl 413 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
105100, 102, 104mpbir2and 950 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
Im `  ( log `  A ) ) )  <_  pi )
10691, 105eqbrtrd 4105 . . . . . . . 8  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  <_  pi )
10779, 89, 58, 90, 106lemul2ad 9087 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
10880, 84, 61, 88, 107letrd 8270 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
10918, 80, 61, 83, 108letrd 8270 . . . . 5  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi ) )
110 efle 15450 . . . . . 6  |-  ( ( ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR  /\  (
( abs `  B
)  x.  pi )  e.  RR )  -> 
( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
11118, 61, 110syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
112109, 111mpbid 147 . . . 4  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) )
11350, 62, 56, 76, 112lemul2ad 9087 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  <_  (
( M  ^c 
( Re `  B
) )  x.  ( exp `  ( ( abs `  B )  x.  pi ) ) ) )
11451, 57, 63, 75, 113letrd 8270 . 2  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
11547, 114eqbrtrd 4105 1  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999    + caddc 8002    x. cmul 8004    < clt 8181    <_ cle 8182    - cmin 8317   -ucneg 8318   RR+crp 9849   Recre 11351   Imcim 11352   abscabs 11508   expce 12153   picpi 12158   logclog 15530    ^c ccxp 15531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-pre-suploc 8120  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-map 6797  df-pm 6798  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ioo 10088  df-ioc 10089  df-ico 10090  df-icc 10091  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-shft 11326  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-e 12160  df-sin 12161  df-cos 12162  df-pi 12164  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245  df-limced 15330  df-dvap 15331  df-relog 15532  df-rpcxp 15533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator