ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpabscxpbnd Unicode version

Theorem rpabscxpbnd 15445
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
Hypotheses
Ref Expression
rpabscxpbnd.1  |-  ( ph  ->  A  e.  RR+ )
abscxpbnd.2  |-  ( ph  ->  B  e.  CC )
rpabscxpbnd.3  |-  ( ph  ->  0  <  ( Re
`  B ) )
abscxpbnd.4  |-  ( ph  ->  M  e.  RR )
abscxpbnd.5  |-  ( ph  ->  ( abs `  A
)  <_  M )
Assertion
Ref Expression
rpabscxpbnd  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )

Proof of Theorem rpabscxpbnd
StepHypRef Expression
1 rpabscxpbnd.1 . . . . 5  |-  ( ph  ->  A  e.  RR+ )
2 abscxpbnd.2 . . . . 5  |-  ( ph  ->  B  e.  CC )
3 rpcxpef 15399 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
41, 2, 3syl2anc 411 . . . 4  |-  ( ph  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A
) ) ) )
54fveq2d 5582 . . 3  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  =  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) ) )
61relogcld 15387 . . . . . 6  |-  ( ph  ->  ( log `  A
)  e.  RR )
76recnd 8103 . . . . 5  |-  ( ph  ->  ( log `  A
)  e.  CC )
82, 7mulcld 8095 . . . 4  |-  ( ph  ->  ( B  x.  ( log `  A ) )  e.  CC )
9 absef 12114 . . . 4  |-  ( ( B  x.  ( log `  A ) )  e.  CC  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) ) )
108, 9syl 14 . . 3  |-  ( ph  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) ) )
112recld 11282 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  RR )
127recld 11282 . . . . . . 7  |-  ( ph  ->  ( Re `  ( log `  A ) )  e.  RR )
1311, 12remulcld 8105 . . . . . 6  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  RR )
1413recnd 8103 . . . . 5  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC )
152imcld 11283 . . . . . . 7  |-  ( ph  ->  ( Im `  B
)  e.  RR )
167imcld 11283 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  RR )
1716renegcld 8454 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  ( log `  A ) )  e.  RR )
1815, 17remulcld 8105 . . . . . 6  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR )
1918recnd 8103 . . . . 5  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )
20 efadd 12019 . . . . 5  |-  ( ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC  /\  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )  -> 
( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
2114, 19, 20syl2anc 411 . . . 4  |-  ( ph  ->  ( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
2215, 16remulcld 8105 . . . . . . . 8  |-  ( ph  ->  ( ( Im `  B )  x.  (
Im `  ( log `  A ) ) )  e.  RR )
2322recnd 8103 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  (
Im `  ( log `  A ) ) )  e.  CC )
2414, 23negsubd 8391 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  -u (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) )  =  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  -  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
2515recnd 8103 . . . . . . . 8  |-  ( ph  ->  ( Im `  B
)  e.  CC )
2616recnd 8103 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  CC )
2725, 26mulneg2d 8486 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  =  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) )
2827oveq2d 5962 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  -u (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
292, 7remuld 11307 . . . . . 6  |-  ( ph  ->  ( Re `  ( B  x.  ( log `  A ) ) )  =  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  -  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
3024, 28, 293eqtr4d 2248 . . . . 5  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( Re `  ( B  x.  ( log `  A ) ) ) )
3130fveq2d 5582 . . . 4  |-  ( ph  ->  ( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) ) )
326rered 11313 . . . . . . . . 9  |-  ( ph  ->  ( Re `  ( log `  A ) )  =  ( log `  A
) )
331rpred 9820 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
341rpge0d 9824 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
3533, 34absidd 11511 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  =  A )
3635fveq2d 5582 . . . . . . . . 9  |-  ( ph  ->  ( log `  ( abs `  A ) )  =  ( log `  A
) )
3732, 36eqtr4d 2241 . . . . . . . 8  |-  ( ph  ->  ( Re `  ( log `  A ) )  =  ( log `  ( abs `  A ) ) )
3837oveq2d 5962 . . . . . . 7  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  =  ( ( Re
`  B )  x.  ( log `  ( abs `  A ) ) ) )
3938fveq2d 5582 . . . . . 6  |-  ( ph  ->  ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  =  ( exp `  (
( Re `  B
)  x.  ( log `  ( abs `  A
) ) ) ) )
4035, 1eqeltrd 2282 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
4111recnd 8103 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  CC )
42 rpcxpef 15399 . . . . . . 7  |-  ( ( ( abs `  A
)  e.  RR+  /\  (
Re `  B )  e.  CC )  ->  (
( abs `  A
)  ^c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
4340, 41, 42syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
4439, 43eqtr4d 2241 . . . . 5  |-  ( ph  ->  ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  =  ( ( abs `  A )  ^c 
( Re `  B
) ) )
4544oveq1d 5961 . . . 4  |-  ( ph  ->  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
4621, 31, 453eqtr3d 2246 . . 3  |-  ( ph  ->  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) )  =  ( ( ( abs `  A )  ^c  ( Re
`  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
475, 10, 463eqtrd 2242 . 2  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
4840, 11rpcxpcld 15438 . . . . 5  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  e.  RR+ )
4948rpred 9820 . . . 4  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  e.  RR )
5018reefcld 12013 . . . 4  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  e.  RR )
5149, 50remulcld 8105 . . 3  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  e.  RR )
52 abscxpbnd.4 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
53 abscxpbnd.5 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  <_  M )
5452, 40, 53rpgecld 9860 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
5554, 11rpcxpcld 15438 . . . . 5  |-  ( ph  ->  ( M  ^c 
( Re `  B
) )  e.  RR+ )
5655rpred 9820 . . . 4  |-  ( ph  ->  ( M  ^c 
( Re `  B
) )  e.  RR )
5756, 50remulcld 8105 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  e.  RR )
582abscld 11525 . . . . . 6  |-  ( ph  ->  ( abs `  B
)  e.  RR )
59 pire 15291 . . . . . 6  |-  pi  e.  RR
60 remulcl 8055 . . . . . 6  |-  ( ( ( abs `  B
)  e.  RR  /\  pi  e.  RR )  -> 
( ( abs `  B
)  x.  pi )  e.  RR )
6158, 59, 60sylancl 413 . . . . 5  |-  ( ph  ->  ( ( abs `  B
)  x.  pi )  e.  RR )
6261reefcld 12013 . . . 4  |-  ( ph  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR )
6356, 62remulcld 8105 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) )  e.  RR )
6418rpefcld 12030 . . . . 5  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  e.  RR+ )
6564rpge0d 9824 . . . 4  |-  ( ph  ->  0  <_  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )
661rpcnd 9822 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
671rpap0d 9826 . . . . . . 7  |-  ( ph  ->  A #  0 )
6866, 67absrpclapd 11532 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
6952, 68, 53rpgecld 9860 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
70 rpabscxpbnd.3 . . . . . . 7  |-  ( ph  ->  0  <  ( Re
`  B ) )
7111, 70elrpd 9817 . . . . . 6  |-  ( ph  ->  ( Re `  B
)  e.  RR+ )
72 rpcxple2 15423 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR+  /\  M  e.  RR+  /\  ( Re
`  B )  e.  RR+ )  ->  ( ( abs `  A )  <_  M  <->  ( ( abs `  A )  ^c  ( Re `  B ) )  <_ 
( M  ^c 
( Re `  B
) ) ) )
7368, 69, 71, 72syl3anc 1250 . . . . 5  |-  ( ph  ->  ( ( abs `  A
)  <_  M  <->  ( ( abs `  A )  ^c  ( Re `  B ) )  <_ 
( M  ^c 
( Re `  B
) ) ) )
7453, 73mpbid 147 . . . 4  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  <_  ( M  ^c  ( Re `  B ) ) )
7549, 56, 50, 65, 74lemul1ad 9014 . . 3  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
7655rpge0d 9824 . . . 4  |-  ( ph  ->  0  <_  ( M  ^c  ( Re `  B ) ) )
7725abscld 11525 . . . . . . 7  |-  ( ph  ->  ( abs `  (
Im `  B )
)  e.  RR )
7817recnd 8103 . . . . . . . 8  |-  ( ph  -> 
-u ( Im `  ( log `  A ) )  e.  CC )
7978abscld 11525 . . . . . . 7  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  e.  RR )
8077, 79remulcld 8105 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
8118leabsd 11505 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )
8225, 78absmuld 11538 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  =  ( ( abs `  ( Im
`  B ) )  x.  ( abs `  -u (
Im `  ( log `  A ) ) ) ) )
8381, 82breqtrd 4071 . . . . . 6  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  ( Im `  B
) )  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
8458, 79remulcld 8105 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
8578absge0d 11528 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  -u ( Im `  ( log `  A ) ) ) )
86 absimle 11428 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( abs `  ( Im `  B ) )  <_ 
( abs `  B
) )
872, 86syl 14 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
Im `  B )
)  <_  ( abs `  B ) )
8877, 58, 79, 85, 87lemul1ad 9014 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
8959a1i 9 . . . . . . . 8  |-  ( ph  ->  pi  e.  RR )
902absge0d 11528 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  B ) )
9126absnegd 11533 . . . . . . . . 9  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  =  ( abs `  (
Im `  ( log `  A ) ) ) )
9259renegcli 8336 . . . . . . . . . . . 12  |-  -u pi  e.  RR
93 0re 8074 . . . . . . . . . . . 12  |-  0  e.  RR
94 pipos 15293 . . . . . . . . . . . . 13  |-  0  <  pi
95 lt0neg2 8544 . . . . . . . . . . . . . 14  |-  ( pi  e.  RR  ->  (
0  <  pi  <->  -u pi  <  0 ) )
9659, 95ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0  <  pi  <->  -u pi  <  0 )
9794, 96mpbi 145 . . . . . . . . . . . 12  |-  -u pi  <  0
9892, 93, 97ltleii 8177 . . . . . . . . . . 11  |-  -u pi  <_  0
996reim0d 11314 . . . . . . . . . . 11  |-  ( ph  ->  ( Im `  ( log `  A ) )  =  0 )
10098, 99breqtrrid 4083 . . . . . . . . . 10  |-  ( ph  -> 
-u pi  <_  (
Im `  ( log `  A ) ) )
10193, 59, 94ltleii 8177 . . . . . . . . . . 11  |-  0  <_  pi
10299, 101eqbrtrdi 4084 . . . . . . . . . 10  |-  ( ph  ->  ( Im `  ( log `  A ) )  <_  pi )
103 absle 11433 . . . . . . . . . . 11  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
10416, 59, 103sylancl 413 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
105100, 102, 104mpbir2and 947 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
Im `  ( log `  A ) ) )  <_  pi )
10691, 105eqbrtrd 4067 . . . . . . . 8  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  <_  pi )
10779, 89, 58, 90, 106lemul2ad 9015 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
10880, 84, 61, 88, 107letrd 8198 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
10918, 80, 61, 83, 108letrd 8198 . . . . 5  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi ) )
110 efle 15281 . . . . . 6  |-  ( ( ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR  /\  (
( abs `  B
)  x.  pi )  e.  RR )  -> 
( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
11118, 61, 110syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
112109, 111mpbid 147 . . . 4  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) )
11350, 62, 56, 76, 112lemul2ad 9015 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  <_  (
( M  ^c 
( Re `  B
) )  x.  ( exp `  ( ( abs `  B )  x.  pi ) ) ) )
11451, 57, 63, 75, 113letrd 8198 . 2  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
11547, 114eqbrtrd 4067 1  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927    + caddc 7930    x. cmul 7932    < clt 8109    <_ cle 8110    - cmin 8245   -ucneg 8246   RR+crp 9777   Recre 11184   Imcim 11185   abscabs 11341   expce 11986   picpi 11991   logclog 15361    ^c ccxp 15362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047  ax-pre-suploc 8048  ax-addf 8049  ax-mulf 8050
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-of 6160  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-map 6739  df-pm 6740  df-en 6830  df-dom 6831  df-fin 6832  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-9 9104  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-xneg 9896  df-xadd 9897  df-ioo 10016  df-ioc 10017  df-ico 10018  df-icc 10019  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-fac 10873  df-bc 10895  df-ihash 10923  df-shft 11159  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698  df-ef 11992  df-e 11993  df-sin 11994  df-cos 11995  df-pi 11997  df-rest 13106  df-topgen 13125  df-psmet 14338  df-xmet 14339  df-met 14340  df-bl 14341  df-mopn 14342  df-top 14503  df-topon 14516  df-bases 14548  df-ntr 14601  df-cn 14693  df-cnp 14694  df-tx 14758  df-cncf 15076  df-limced 15161  df-dvap 15162  df-relog 15363  df-rpcxp 15364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator