ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpabscxpbnd Unicode version

Theorem rpabscxpbnd 13400
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
Hypotheses
Ref Expression
rpabscxpbnd.1  |-  ( ph  ->  A  e.  RR+ )
abscxpbnd.2  |-  ( ph  ->  B  e.  CC )
rpabscxpbnd.3  |-  ( ph  ->  0  <  ( Re
`  B ) )
abscxpbnd.4  |-  ( ph  ->  M  e.  RR )
abscxpbnd.5  |-  ( ph  ->  ( abs `  A
)  <_  M )
Assertion
Ref Expression
rpabscxpbnd  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )

Proof of Theorem rpabscxpbnd
StepHypRef Expression
1 rpabscxpbnd.1 . . . . 5  |-  ( ph  ->  A  e.  RR+ )
2 abscxpbnd.2 . . . . 5  |-  ( ph  ->  B  e.  CC )
3 rpcxpef 13356 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
41, 2, 3syl2anc 409 . . . 4  |-  ( ph  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A
) ) ) )
54fveq2d 5484 . . 3  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  =  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) ) )
61relogcld 13344 . . . . . 6  |-  ( ph  ->  ( log `  A
)  e.  RR )
76recnd 7918 . . . . 5  |-  ( ph  ->  ( log `  A
)  e.  CC )
82, 7mulcld 7910 . . . 4  |-  ( ph  ->  ( B  x.  ( log `  A ) )  e.  CC )
9 absef 11696 . . . 4  |-  ( ( B  x.  ( log `  A ) )  e.  CC  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) ) )
108, 9syl 14 . . 3  |-  ( ph  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) ) )
112recld 10866 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  RR )
127recld 10866 . . . . . . 7  |-  ( ph  ->  ( Re `  ( log `  A ) )  e.  RR )
1311, 12remulcld 7920 . . . . . 6  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  RR )
1413recnd 7918 . . . . 5  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC )
152imcld 10867 . . . . . . 7  |-  ( ph  ->  ( Im `  B
)  e.  RR )
167imcld 10867 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  RR )
1716renegcld 8269 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  ( log `  A ) )  e.  RR )
1815, 17remulcld 7920 . . . . . 6  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR )
1918recnd 7918 . . . . 5  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )
20 efadd 11602 . . . . 5  |-  ( ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC  /\  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )  -> 
( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
2114, 19, 20syl2anc 409 . . . 4  |-  ( ph  ->  ( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
2215, 16remulcld 7920 . . . . . . . 8  |-  ( ph  ->  ( ( Im `  B )  x.  (
Im `  ( log `  A ) ) )  e.  RR )
2322recnd 7918 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  (
Im `  ( log `  A ) ) )  e.  CC )
2414, 23negsubd 8206 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  -u (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) )  =  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  -  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
2515recnd 7918 . . . . . . . 8  |-  ( ph  ->  ( Im `  B
)  e.  CC )
2616recnd 7918 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  CC )
2725, 26mulneg2d 8301 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  =  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) )
2827oveq2d 5852 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  -u (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
292, 7remuld 10891 . . . . . 6  |-  ( ph  ->  ( Re `  ( B  x.  ( log `  A ) ) )  =  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  -  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
3024, 28, 293eqtr4d 2207 . . . . 5  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( Re `  ( B  x.  ( log `  A ) ) ) )
3130fveq2d 5484 . . . 4  |-  ( ph  ->  ( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) ) )
326rered 10897 . . . . . . . . 9  |-  ( ph  ->  ( Re `  ( log `  A ) )  =  ( log `  A
) )
331rpred 9623 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
341rpge0d 9627 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
3533, 34absidd 11095 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  =  A )
3635fveq2d 5484 . . . . . . . . 9  |-  ( ph  ->  ( log `  ( abs `  A ) )  =  ( log `  A
) )
3732, 36eqtr4d 2200 . . . . . . . 8  |-  ( ph  ->  ( Re `  ( log `  A ) )  =  ( log `  ( abs `  A ) ) )
3837oveq2d 5852 . . . . . . 7  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  =  ( ( Re
`  B )  x.  ( log `  ( abs `  A ) ) ) )
3938fveq2d 5484 . . . . . 6  |-  ( ph  ->  ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  =  ( exp `  (
( Re `  B
)  x.  ( log `  ( abs `  A
) ) ) ) )
4035, 1eqeltrd 2241 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
4111recnd 7918 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  CC )
42 rpcxpef 13356 . . . . . . 7  |-  ( ( ( abs `  A
)  e.  RR+  /\  (
Re `  B )  e.  CC )  ->  (
( abs `  A
)  ^c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
4340, 41, 42syl2anc 409 . . . . . 6  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
4439, 43eqtr4d 2200 . . . . 5  |-  ( ph  ->  ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  =  ( ( abs `  A )  ^c 
( Re `  B
) ) )
4544oveq1d 5851 . . . 4  |-  ( ph  ->  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
4621, 31, 453eqtr3d 2205 . . 3  |-  ( ph  ->  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) )  =  ( ( ( abs `  A )  ^c  ( Re
`  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
475, 10, 463eqtrd 2201 . 2  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
4840, 11rpcxpcld 13393 . . . . 5  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  e.  RR+ )
4948rpred 9623 . . . 4  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  e.  RR )
5018reefcld 11596 . . . 4  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  e.  RR )
5149, 50remulcld 7920 . . 3  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  e.  RR )
52 abscxpbnd.4 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
53 abscxpbnd.5 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  <_  M )
5452, 40, 53rpgecld 9663 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
5554, 11rpcxpcld 13393 . . . . 5  |-  ( ph  ->  ( M  ^c 
( Re `  B
) )  e.  RR+ )
5655rpred 9623 . . . 4  |-  ( ph  ->  ( M  ^c 
( Re `  B
) )  e.  RR )
5756, 50remulcld 7920 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  e.  RR )
582abscld 11109 . . . . . 6  |-  ( ph  ->  ( abs `  B
)  e.  RR )
59 pire 13248 . . . . . 6  |-  pi  e.  RR
60 remulcl 7872 . . . . . 6  |-  ( ( ( abs `  B
)  e.  RR  /\  pi  e.  RR )  -> 
( ( abs `  B
)  x.  pi )  e.  RR )
6158, 59, 60sylancl 410 . . . . 5  |-  ( ph  ->  ( ( abs `  B
)  x.  pi )  e.  RR )
6261reefcld 11596 . . . 4  |-  ( ph  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR )
6356, 62remulcld 7920 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) )  e.  RR )
6418rpefcld 11613 . . . . 5  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  e.  RR+ )
6564rpge0d 9627 . . . 4  |-  ( ph  ->  0  <_  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )
661rpcnd 9625 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
671rpap0d 9629 . . . . . . 7  |-  ( ph  ->  A #  0 )
6866, 67absrpclapd 11116 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
6952, 68, 53rpgecld 9663 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
70 rpabscxpbnd.3 . . . . . . 7  |-  ( ph  ->  0  <  ( Re
`  B ) )
7111, 70elrpd 9620 . . . . . 6  |-  ( ph  ->  ( Re `  B
)  e.  RR+ )
72 rpcxple2 13379 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR+  /\  M  e.  RR+  /\  ( Re
`  B )  e.  RR+ )  ->  ( ( abs `  A )  <_  M  <->  ( ( abs `  A )  ^c  ( Re `  B ) )  <_ 
( M  ^c 
( Re `  B
) ) ) )
7368, 69, 71, 72syl3anc 1227 . . . . 5  |-  ( ph  ->  ( ( abs `  A
)  <_  M  <->  ( ( abs `  A )  ^c  ( Re `  B ) )  <_ 
( M  ^c 
( Re `  B
) ) ) )
7453, 73mpbid 146 . . . 4  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  <_  ( M  ^c  ( Re `  B ) ) )
7549, 56, 50, 65, 74lemul1ad 8825 . . 3  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
7655rpge0d 9627 . . . 4  |-  ( ph  ->  0  <_  ( M  ^c  ( Re `  B ) ) )
7725abscld 11109 . . . . . . 7  |-  ( ph  ->  ( abs `  (
Im `  B )
)  e.  RR )
7817recnd 7918 . . . . . . . 8  |-  ( ph  -> 
-u ( Im `  ( log `  A ) )  e.  CC )
7978abscld 11109 . . . . . . 7  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  e.  RR )
8077, 79remulcld 7920 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
8118leabsd 11089 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )
8225, 78absmuld 11122 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  =  ( ( abs `  ( Im
`  B ) )  x.  ( abs `  -u (
Im `  ( log `  A ) ) ) ) )
8381, 82breqtrd 4002 . . . . . 6  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  ( Im `  B
) )  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
8458, 79remulcld 7920 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
8578absge0d 11112 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  -u ( Im `  ( log `  A ) ) ) )
86 absimle 11012 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( abs `  ( Im `  B ) )  <_ 
( abs `  B
) )
872, 86syl 14 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
Im `  B )
)  <_  ( abs `  B ) )
8877, 58, 79, 85, 87lemul1ad 8825 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
8959a1i 9 . . . . . . . 8  |-  ( ph  ->  pi  e.  RR )
902absge0d 11112 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  B ) )
9126absnegd 11117 . . . . . . . . 9  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  =  ( abs `  (
Im `  ( log `  A ) ) ) )
9259renegcli 8151 . . . . . . . . . . . 12  |-  -u pi  e.  RR
93 0re 7890 . . . . . . . . . . . 12  |-  0  e.  RR
94 pipos 13250 . . . . . . . . . . . . 13  |-  0  <  pi
95 lt0neg2 8358 . . . . . . . . . . . . . 14  |-  ( pi  e.  RR  ->  (
0  <  pi  <->  -u pi  <  0 ) )
9659, 95ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0  <  pi  <->  -u pi  <  0 )
9794, 96mpbi 144 . . . . . . . . . . . 12  |-  -u pi  <  0
9892, 93, 97ltleii 7992 . . . . . . . . . . 11  |-  -u pi  <_  0
996reim0d 10898 . . . . . . . . . . 11  |-  ( ph  ->  ( Im `  ( log `  A ) )  =  0 )
10098, 99breqtrrid 4014 . . . . . . . . . 10  |-  ( ph  -> 
-u pi  <_  (
Im `  ( log `  A ) ) )
10193, 59, 94ltleii 7992 . . . . . . . . . . 11  |-  0  <_  pi
10299, 101eqbrtrdi 4015 . . . . . . . . . 10  |-  ( ph  ->  ( Im `  ( log `  A ) )  <_  pi )
103 absle 11017 . . . . . . . . . . 11  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
10416, 59, 103sylancl 410 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
105100, 102, 104mpbir2and 933 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
Im `  ( log `  A ) ) )  <_  pi )
10691, 105eqbrtrd 3998 . . . . . . . 8  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  <_  pi )
10779, 89, 58, 90, 106lemul2ad 8826 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
10880, 84, 61, 88, 107letrd 8013 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
10918, 80, 61, 83, 108letrd 8013 . . . . 5  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi ) )
110 efle 13238 . . . . . 6  |-  ( ( ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR  /\  (
( abs `  B
)  x.  pi )  e.  RR )  -> 
( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
11118, 61, 110syl2anc 409 . . . . 5  |-  ( ph  ->  ( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
112109, 111mpbid 146 . . . 4  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) )
11350, 62, 56, 76, 112lemul2ad 8826 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  <_  (
( M  ^c 
( Re `  B
) )  x.  ( exp `  ( ( abs `  B )  x.  pi ) ) ) )
11451, 57, 63, 75, 113letrd 8013 . 2  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
11547, 114eqbrtrd 3998 1  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   class class class wbr 3976   ` cfv 5182  (class class class)co 5836   CCcc 7742   RRcr 7743   0cc0 7744    + caddc 7747    x. cmul 7749    < clt 7924    <_ cle 7925    - cmin 8060   -ucneg 8061   RR+crp 9580   Recre 10768   Imcim 10769   abscabs 10925   expce 11569   picpi 11574   logclog 13318    ^c ccxp 13319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864  ax-pre-suploc 7865  ax-addf 7866  ax-mulf 7867
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-disj 3954  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-of 6044  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-frec 6350  df-1o 6375  df-oadd 6379  df-er 6492  df-map 6607  df-pm 6608  df-en 6698  df-dom 6699  df-fin 6700  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-5 8910  df-6 8911  df-7 8912  df-8 8913  df-9 8914  df-n0 9106  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-xneg 9699  df-xadd 9700  df-ioo 9819  df-ioc 9820  df-ico 9821  df-icc 9822  df-fz 9936  df-fzo 10068  df-seqfrec 10371  df-exp 10445  df-fac 10628  df-bc 10650  df-ihash 10678  df-shft 10743  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-clim 11206  df-sumdc 11281  df-ef 11575  df-e 11576  df-sin 11577  df-cos 11578  df-pi 11580  df-rest 12494  df-topgen 12513  df-psmet 12528  df-xmet 12529  df-met 12530  df-bl 12531  df-mopn 12532  df-top 12537  df-topon 12550  df-bases 12582  df-ntr 12637  df-cn 12729  df-cnp 12730  df-tx 12794  df-cncf 13099  df-limced 13166  df-dvap 13167  df-relog 13320  df-rpcxp 13321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator