| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpabscxpbnd | Unicode version | ||
| Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.) |
| Ref | Expression |
|---|---|
| rpabscxpbnd.1 |
|
| abscxpbnd.2 |
|
| rpabscxpbnd.3 |
|
| abscxpbnd.4 |
|
| abscxpbnd.5 |
|
| Ref | Expression |
|---|---|
| rpabscxpbnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpabscxpbnd.1 |
. . . . 5
| |
| 2 | abscxpbnd.2 |
. . . . 5
| |
| 3 | rpcxpef 15481 |
. . . . 5
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . . 4
|
| 5 | 4 | fveq2d 5603 |
. . 3
|
| 6 | 1 | relogcld 15469 |
. . . . . 6
|
| 7 | 6 | recnd 8136 |
. . . . 5
|
| 8 | 2, 7 | mulcld 8128 |
. . . 4
|
| 9 | absef 12196 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | 2 | recld 11364 |
. . . . . . 7
|
| 12 | 7 | recld 11364 |
. . . . . . 7
|
| 13 | 11, 12 | remulcld 8138 |
. . . . . 6
|
| 14 | 13 | recnd 8136 |
. . . . 5
|
| 15 | 2 | imcld 11365 |
. . . . . . 7
|
| 16 | 7 | imcld 11365 |
. . . . . . . 8
|
| 17 | 16 | renegcld 8487 |
. . . . . . 7
|
| 18 | 15, 17 | remulcld 8138 |
. . . . . 6
|
| 19 | 18 | recnd 8136 |
. . . . 5
|
| 20 | efadd 12101 |
. . . . 5
| |
| 21 | 14, 19, 20 | syl2anc 411 |
. . . 4
|
| 22 | 15, 16 | remulcld 8138 |
. . . . . . . 8
|
| 23 | 22 | recnd 8136 |
. . . . . . 7
|
| 24 | 14, 23 | negsubd 8424 |
. . . . . 6
|
| 25 | 15 | recnd 8136 |
. . . . . . . 8
|
| 26 | 16 | recnd 8136 |
. . . . . . . 8
|
| 27 | 25, 26 | mulneg2d 8519 |
. . . . . . 7
|
| 28 | 27 | oveq2d 5983 |
. . . . . 6
|
| 29 | 2, 7 | remuld 11389 |
. . . . . 6
|
| 30 | 24, 28, 29 | 3eqtr4d 2250 |
. . . . 5
|
| 31 | 30 | fveq2d 5603 |
. . . 4
|
| 32 | 6 | rered 11395 |
. . . . . . . . 9
|
| 33 | 1 | rpred 9853 |
. . . . . . . . . . 11
|
| 34 | 1 | rpge0d 9857 |
. . . . . . . . . . 11
|
| 35 | 33, 34 | absidd 11593 |
. . . . . . . . . 10
|
| 36 | 35 | fveq2d 5603 |
. . . . . . . . 9
|
| 37 | 32, 36 | eqtr4d 2243 |
. . . . . . . 8
|
| 38 | 37 | oveq2d 5983 |
. . . . . . 7
|
| 39 | 38 | fveq2d 5603 |
. . . . . 6
|
| 40 | 35, 1 | eqeltrd 2284 |
. . . . . . 7
|
| 41 | 11 | recnd 8136 |
. . . . . . 7
|
| 42 | rpcxpef 15481 |
. . . . . . 7
| |
| 43 | 40, 41, 42 | syl2anc 411 |
. . . . . 6
|
| 44 | 39, 43 | eqtr4d 2243 |
. . . . 5
|
| 45 | 44 | oveq1d 5982 |
. . . 4
|
| 46 | 21, 31, 45 | 3eqtr3d 2248 |
. . 3
|
| 47 | 5, 10, 46 | 3eqtrd 2244 |
. 2
|
| 48 | 40, 11 | rpcxpcld 15520 |
. . . . 5
|
| 49 | 48 | rpred 9853 |
. . . 4
|
| 50 | 18 | reefcld 12095 |
. . . 4
|
| 51 | 49, 50 | remulcld 8138 |
. . 3
|
| 52 | abscxpbnd.4 |
. . . . . . 7
| |
| 53 | abscxpbnd.5 |
. . . . . . 7
| |
| 54 | 52, 40, 53 | rpgecld 9893 |
. . . . . 6
|
| 55 | 54, 11 | rpcxpcld 15520 |
. . . . 5
|
| 56 | 55 | rpred 9853 |
. . . 4
|
| 57 | 56, 50 | remulcld 8138 |
. . 3
|
| 58 | 2 | abscld 11607 |
. . . . . 6
|
| 59 | pire 15373 |
. . . . . 6
| |
| 60 | remulcl 8088 |
. . . . . 6
| |
| 61 | 58, 59, 60 | sylancl 413 |
. . . . 5
|
| 62 | 61 | reefcld 12095 |
. . . 4
|
| 63 | 56, 62 | remulcld 8138 |
. . 3
|
| 64 | 18 | rpefcld 12112 |
. . . . 5
|
| 65 | 64 | rpge0d 9857 |
. . . 4
|
| 66 | 1 | rpcnd 9855 |
. . . . . . 7
|
| 67 | 1 | rpap0d 9859 |
. . . . . . 7
|
| 68 | 66, 67 | absrpclapd 11614 |
. . . . . 6
|
| 69 | 52, 68, 53 | rpgecld 9893 |
. . . . . 6
|
| 70 | rpabscxpbnd.3 |
. . . . . . 7
| |
| 71 | 11, 70 | elrpd 9850 |
. . . . . 6
|
| 72 | rpcxple2 15505 |
. . . . . 6
| |
| 73 | 68, 69, 71, 72 | syl3anc 1250 |
. . . . 5
|
| 74 | 53, 73 | mpbid 147 |
. . . 4
|
| 75 | 49, 56, 50, 65, 74 | lemul1ad 9047 |
. . 3
|
| 76 | 55 | rpge0d 9857 |
. . . 4
|
| 77 | 25 | abscld 11607 |
. . . . . . 7
|
| 78 | 17 | recnd 8136 |
. . . . . . . 8
|
| 79 | 78 | abscld 11607 |
. . . . . . 7
|
| 80 | 77, 79 | remulcld 8138 |
. . . . . 6
|
| 81 | 18 | leabsd 11587 |
. . . . . . 7
|
| 82 | 25, 78 | absmuld 11620 |
. . . . . . 7
|
| 83 | 81, 82 | breqtrd 4085 |
. . . . . 6
|
| 84 | 58, 79 | remulcld 8138 |
. . . . . . 7
|
| 85 | 78 | absge0d 11610 |
. . . . . . . 8
|
| 86 | absimle 11510 |
. . . . . . . . 9
| |
| 87 | 2, 86 | syl 14 |
. . . . . . . 8
|
| 88 | 77, 58, 79, 85, 87 | lemul1ad 9047 |
. . . . . . 7
|
| 89 | 59 | a1i 9 |
. . . . . . . 8
|
| 90 | 2 | absge0d 11610 |
. . . . . . . 8
|
| 91 | 26 | absnegd 11615 |
. . . . . . . . 9
|
| 92 | 59 | renegcli 8369 |
. . . . . . . . . . . 12
|
| 93 | 0re 8107 |
. . . . . . . . . . . 12
| |
| 94 | pipos 15375 |
. . . . . . . . . . . . 13
| |
| 95 | lt0neg2 8577 |
. . . . . . . . . . . . . 14
| |
| 96 | 59, 95 | ax-mp 5 |
. . . . . . . . . . . . 13
|
| 97 | 94, 96 | mpbi 145 |
. . . . . . . . . . . 12
|
| 98 | 92, 93, 97 | ltleii 8210 |
. . . . . . . . . . 11
|
| 99 | 6 | reim0d 11396 |
. . . . . . . . . . 11
|
| 100 | 98, 99 | breqtrrid 4097 |
. . . . . . . . . 10
|
| 101 | 93, 59, 94 | ltleii 8210 |
. . . . . . . . . . 11
|
| 102 | 99, 101 | eqbrtrdi 4098 |
. . . . . . . . . 10
|
| 103 | absle 11515 |
. . . . . . . . . . 11
| |
| 104 | 16, 59, 103 | sylancl 413 |
. . . . . . . . . 10
|
| 105 | 100, 102, 104 | mpbir2and 947 |
. . . . . . . . 9
|
| 106 | 91, 105 | eqbrtrd 4081 |
. . . . . . . 8
|
| 107 | 79, 89, 58, 90, 106 | lemul2ad 9048 |
. . . . . . 7
|
| 108 | 80, 84, 61, 88, 107 | letrd 8231 |
. . . . . 6
|
| 109 | 18, 80, 61, 83, 108 | letrd 8231 |
. . . . 5
|
| 110 | efle 15363 |
. . . . . 6
| |
| 111 | 18, 61, 110 | syl2anc 411 |
. . . . 5
|
| 112 | 109, 111 | mpbid 147 |
. . . 4
|
| 113 | 50, 62, 56, 76, 112 | lemul2ad 9048 |
. . 3
|
| 114 | 51, 57, 63, 75, 113 | letrd 8231 |
. 2
|
| 115 | 47, 114 | eqbrtrd 4081 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-pre-suploc 8081 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-of 6181 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-map 6760 df-pm 6761 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-ioo 10049 df-ioc 10050 df-ico 10051 df-icc 10052 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-bc 10930 df-ihash 10958 df-shft 11241 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 df-e 12075 df-sin 12076 df-cos 12077 df-pi 12079 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-ntr 14683 df-cn 14775 df-cnp 14776 df-tx 14840 df-cncf 15158 df-limced 15243 df-dvap 15244 df-relog 15445 df-rpcxp 15446 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |