ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpabscxpbnd Unicode version

Theorem rpabscxpbnd 15114
Description: Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
Hypotheses
Ref Expression
rpabscxpbnd.1  |-  ( ph  ->  A  e.  RR+ )
abscxpbnd.2  |-  ( ph  ->  B  e.  CC )
rpabscxpbnd.3  |-  ( ph  ->  0  <  ( Re
`  B ) )
abscxpbnd.4  |-  ( ph  ->  M  e.  RR )
abscxpbnd.5  |-  ( ph  ->  ( abs `  A
)  <_  M )
Assertion
Ref Expression
rpabscxpbnd  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )

Proof of Theorem rpabscxpbnd
StepHypRef Expression
1 rpabscxpbnd.1 . . . . 5  |-  ( ph  ->  A  e.  RR+ )
2 abscxpbnd.2 . . . . 5  |-  ( ph  ->  B  e.  CC )
3 rpcxpef 15070 . . . . 5  |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A ) ) ) )
41, 2, 3syl2anc 411 . . . 4  |-  ( ph  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A
) ) ) )
54fveq2d 5559 . . 3  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  =  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) ) )
61relogcld 15058 . . . . . 6  |-  ( ph  ->  ( log `  A
)  e.  RR )
76recnd 8050 . . . . 5  |-  ( ph  ->  ( log `  A
)  e.  CC )
82, 7mulcld 8042 . . . 4  |-  ( ph  ->  ( B  x.  ( log `  A ) )  e.  CC )
9 absef 11916 . . . 4  |-  ( ( B  x.  ( log `  A ) )  e.  CC  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  ( Re `  ( B  x.  ( log `  A ) ) ) ) )
108, 9syl 14 . . 3  |-  ( ph  ->  ( abs `  ( exp `  ( B  x.  ( log `  A ) ) ) )  =  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) ) )
112recld 11085 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  RR )
127recld 11085 . . . . . . 7  |-  ( ph  ->  ( Re `  ( log `  A ) )  e.  RR )
1311, 12remulcld 8052 . . . . . 6  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  RR )
1413recnd 8050 . . . . 5  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC )
152imcld 11086 . . . . . . 7  |-  ( ph  ->  ( Im `  B
)  e.  RR )
167imcld 11086 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  RR )
1716renegcld 8401 . . . . . . 7  |-  ( ph  -> 
-u ( Im `  ( log `  A ) )  e.  RR )
1815, 17remulcld 8052 . . . . . 6  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR )
1918recnd 8050 . . . . 5  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )
20 efadd 11821 . . . . 5  |-  ( ( ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  e.  CC  /\  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) )  e.  CC )  -> 
( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
2114, 19, 20syl2anc 411 . . . 4  |-  ( ph  ->  ( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
2215, 16remulcld 8052 . . . . . . . 8  |-  ( ph  ->  ( ( Im `  B )  x.  (
Im `  ( log `  A ) ) )  e.  RR )
2322recnd 8050 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  (
Im `  ( log `  A ) ) )  e.  CC )
2414, 23negsubd 8338 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  -u (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) )  =  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  -  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
2515recnd 8050 . . . . . . . 8  |-  ( ph  ->  ( Im `  B
)  e.  CC )
2616recnd 8050 . . . . . . . 8  |-  ( ph  ->  ( Im `  ( log `  A ) )  e.  CC )
2725, 26mulneg2d 8433 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  =  -u ( ( Im
`  B )  x.  ( Im `  ( log `  A ) ) ) )
2827oveq2d 5935 . . . . . 6  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  -u (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
292, 7remuld 11110 . . . . . 6  |-  ( ph  ->  ( Re `  ( B  x.  ( log `  A ) ) )  =  ( ( ( Re `  B )  x.  ( Re `  ( log `  A ) ) )  -  (
( Im `  B
)  x.  ( Im
`  ( log `  A
) ) ) ) )
3024, 28, 293eqtr4d 2236 . . . . 5  |-  ( ph  ->  ( ( ( Re
`  B )  x.  ( Re `  ( log `  A ) ) )  +  ( ( Im `  B )  x.  -u ( Im `  ( log `  A ) ) ) )  =  ( Re `  ( B  x.  ( log `  A ) ) ) )
3130fveq2d 5559 . . . 4  |-  ( ph  ->  ( exp `  (
( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  +  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  =  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) ) )
326rered 11116 . . . . . . . . 9  |-  ( ph  ->  ( Re `  ( log `  A ) )  =  ( log `  A
) )
331rpred 9765 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
341rpge0d 9769 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
3533, 34absidd 11314 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  A
)  =  A )
3635fveq2d 5559 . . . . . . . . 9  |-  ( ph  ->  ( log `  ( abs `  A ) )  =  ( log `  A
) )
3732, 36eqtr4d 2229 . . . . . . . 8  |-  ( ph  ->  ( Re `  ( log `  A ) )  =  ( log `  ( abs `  A ) ) )
3837oveq2d 5935 . . . . . . 7  |-  ( ph  ->  ( ( Re `  B )  x.  (
Re `  ( log `  A ) ) )  =  ( ( Re
`  B )  x.  ( log `  ( abs `  A ) ) ) )
3938fveq2d 5559 . . . . . 6  |-  ( ph  ->  ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  =  ( exp `  (
( Re `  B
)  x.  ( log `  ( abs `  A
) ) ) ) )
4035, 1eqeltrd 2270 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
4111recnd 8050 . . . . . . 7  |-  ( ph  ->  ( Re `  B
)  e.  CC )
42 rpcxpef 15070 . . . . . . 7  |-  ( ( ( abs `  A
)  e.  RR+  /\  (
Re `  B )  e.  CC )  ->  (
( abs `  A
)  ^c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
4340, 41, 42syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  =  ( exp `  ( ( Re `  B )  x.  ( log `  ( abs `  A
) ) ) ) )
4439, 43eqtr4d 2229 . . . . 5  |-  ( ph  ->  ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  =  ( ( abs `  A )  ^c 
( Re `  B
) ) )
4544oveq1d 5934 . . . 4  |-  ( ph  ->  ( ( exp `  (
( Re `  B
)  x.  ( Re
`  ( log `  A
) ) ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
4621, 31, 453eqtr3d 2234 . . 3  |-  ( ph  ->  ( exp `  (
Re `  ( B  x.  ( log `  A
) ) ) )  =  ( ( ( abs `  A )  ^c  ( Re
`  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
475, 10, 463eqtrd 2230 . 2  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  =  ( ( ( abs `  A
)  ^c  ( Re `  B ) )  x.  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
4840, 11rpcxpcld 15107 . . . . 5  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  e.  RR+ )
4948rpred 9765 . . . 4  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  e.  RR )
5018reefcld 11815 . . . 4  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  e.  RR )
5149, 50remulcld 8052 . . 3  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  e.  RR )
52 abscxpbnd.4 . . . . . . 7  |-  ( ph  ->  M  e.  RR )
53 abscxpbnd.5 . . . . . . 7  |-  ( ph  ->  ( abs `  A
)  <_  M )
5452, 40, 53rpgecld 9805 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
5554, 11rpcxpcld 15107 . . . . 5  |-  ( ph  ->  ( M  ^c 
( Re `  B
) )  e.  RR+ )
5655rpred 9765 . . . 4  |-  ( ph  ->  ( M  ^c 
( Re `  B
) )  e.  RR )
5756, 50remulcld 8052 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  e.  RR )
582abscld 11328 . . . . . 6  |-  ( ph  ->  ( abs `  B
)  e.  RR )
59 pire 14962 . . . . . 6  |-  pi  e.  RR
60 remulcl 8002 . . . . . 6  |-  ( ( ( abs `  B
)  e.  RR  /\  pi  e.  RR )  -> 
( ( abs `  B
)  x.  pi )  e.  RR )
6158, 59, 60sylancl 413 . . . . 5  |-  ( ph  ->  ( ( abs `  B
)  x.  pi )  e.  RR )
6261reefcld 11815 . . . 4  |-  ( ph  ->  ( exp `  (
( abs `  B
)  x.  pi ) )  e.  RR )
6356, 62remulcld 8052 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) )  e.  RR )
6418rpefcld 11832 . . . . 5  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  e.  RR+ )
6564rpge0d 9769 . . . 4  |-  ( ph  ->  0  <_  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) ) )
661rpcnd 9767 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
671rpap0d 9771 . . . . . . 7  |-  ( ph  ->  A #  0 )
6866, 67absrpclapd 11335 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  e.  RR+ )
6952, 68, 53rpgecld 9805 . . . . . 6  |-  ( ph  ->  M  e.  RR+ )
70 rpabscxpbnd.3 . . . . . . 7  |-  ( ph  ->  0  <  ( Re
`  B ) )
7111, 70elrpd 9762 . . . . . 6  |-  ( ph  ->  ( Re `  B
)  e.  RR+ )
72 rpcxple2 15093 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR+  /\  M  e.  RR+  /\  ( Re
`  B )  e.  RR+ )  ->  ( ( abs `  A )  <_  M  <->  ( ( abs `  A )  ^c  ( Re `  B ) )  <_ 
( M  ^c 
( Re `  B
) ) ) )
7368, 69, 71, 72syl3anc 1249 . . . . 5  |-  ( ph  ->  ( ( abs `  A
)  <_  M  <->  ( ( abs `  A )  ^c  ( Re `  B ) )  <_ 
( M  ^c 
( Re `  B
) ) ) )
7453, 73mpbid 147 . . . 4  |-  ( ph  ->  ( ( abs `  A
)  ^c  ( Re `  B ) )  <_  ( M  ^c  ( Re `  B ) ) )
7549, 56, 50, 65, 74lemul1ad 8960 . . 3  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) ) )
7655rpge0d 9769 . . . 4  |-  ( ph  ->  0  <_  ( M  ^c  ( Re `  B ) ) )
7725abscld 11328 . . . . . . 7  |-  ( ph  ->  ( abs `  (
Im `  B )
)  e.  RR )
7817recnd 8050 . . . . . . . 8  |-  ( ph  -> 
-u ( Im `  ( log `  A ) )  e.  CC )
7978abscld 11328 . . . . . . 7  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  e.  RR )
8077, 79remulcld 8052 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
8118leabsd 11308 . . . . . . 7  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )
8225, 78absmuld 11341 . . . . . . 7  |-  ( ph  ->  ( abs `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  =  ( ( abs `  ( Im
`  B ) )  x.  ( abs `  -u (
Im `  ( log `  A ) ) ) ) )
8381, 82breqtrd 4056 . . . . . 6  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  ( Im `  B
) )  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
8458, 79remulcld 8052 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  e.  RR )
8578absge0d 11331 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  -u ( Im `  ( log `  A ) ) ) )
86 absimle 11231 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( abs `  ( Im `  B ) )  <_ 
( abs `  B
) )
872, 86syl 14 . . . . . . . 8  |-  ( ph  ->  ( abs `  (
Im `  B )
)  <_  ( abs `  B ) )
8877, 58, 79, 85, 87lemul1ad 8960 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) ) )
8959a1i 9 . . . . . . . 8  |-  ( ph  ->  pi  e.  RR )
902absge0d 11331 . . . . . . . 8  |-  ( ph  ->  0  <_  ( abs `  B ) )
9126absnegd 11336 . . . . . . . . 9  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  =  ( abs `  (
Im `  ( log `  A ) ) ) )
9259renegcli 8283 . . . . . . . . . . . 12  |-  -u pi  e.  RR
93 0re 8021 . . . . . . . . . . . 12  |-  0  e.  RR
94 pipos 14964 . . . . . . . . . . . . 13  |-  0  <  pi
95 lt0neg2 8490 . . . . . . . . . . . . . 14  |-  ( pi  e.  RR  ->  (
0  <  pi  <->  -u pi  <  0 ) )
9659, 95ax-mp 5 . . . . . . . . . . . . 13  |-  ( 0  <  pi  <->  -u pi  <  0 )
9794, 96mpbi 145 . . . . . . . . . . . 12  |-  -u pi  <  0
9892, 93, 97ltleii 8124 . . . . . . . . . . 11  |-  -u pi  <_  0
996reim0d 11117 . . . . . . . . . . 11  |-  ( ph  ->  ( Im `  ( log `  A ) )  =  0 )
10098, 99breqtrrid 4068 . . . . . . . . . 10  |-  ( ph  -> 
-u pi  <_  (
Im `  ( log `  A ) ) )
10193, 59, 94ltleii 8124 . . . . . . . . . . 11  |-  0  <_  pi
10299, 101eqbrtrdi 4069 . . . . . . . . . 10  |-  ( ph  ->  ( Im `  ( log `  A ) )  <_  pi )
103 absle 11236 . . . . . . . . . . 11  |-  ( ( ( Im `  ( log `  A ) )  e.  RR  /\  pi  e.  RR )  ->  (
( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
10416, 59, 103sylancl 413 . . . . . . . . . 10  |-  ( ph  ->  ( ( abs `  (
Im `  ( log `  A ) ) )  <_  pi  <->  ( -u pi  <_  ( Im `  ( log `  A ) )  /\  ( Im `  ( log `  A ) )  <_  pi )
) )
105100, 102, 104mpbir2and 946 . . . . . . . . 9  |-  ( ph  ->  ( abs `  (
Im `  ( log `  A ) ) )  <_  pi )
10691, 105eqbrtrd 4052 . . . . . . . 8  |-  ( ph  ->  ( abs `  -u (
Im `  ( log `  A ) ) )  <_  pi )
10779, 89, 58, 90, 106lemul2ad 8961 . . . . . . 7  |-  ( ph  ->  ( ( abs `  B
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
10880, 84, 61, 88, 107letrd 8145 . . . . . 6  |-  ( ph  ->  ( ( abs `  (
Im `  B )
)  x.  ( abs `  -u ( Im `  ( log `  A ) ) ) )  <_ 
( ( abs `  B
)  x.  pi ) )
10918, 80, 61, 83, 108letrd 8145 . . . . 5  |-  ( ph  ->  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi ) )
110 efle 14952 . . . . . 6  |-  ( ( ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) )  e.  RR  /\  (
( abs `  B
)  x.  pi )  e.  RR )  -> 
( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
11118, 61, 110syl2anc 411 . . . . 5  |-  ( ph  ->  ( ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) )  <_  ( ( abs `  B )  x.  pi )  <->  ( exp `  ( ( Im `  B )  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) ) )
112109, 111mpbid 147 . . . 4  |-  ( ph  ->  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) )  <_  ( exp `  ( ( abs `  B
)  x.  pi ) ) )
11350, 62, 56, 76, 112lemul2ad 8961 . . 3  |-  ( ph  ->  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( Im `  B
)  x.  -u (
Im `  ( log `  A ) ) ) ) )  <_  (
( M  ^c 
( Re `  B
) )  x.  ( exp `  ( ( abs `  B )  x.  pi ) ) ) )
11451, 57, 63, 75, 113letrd 8145 . 2  |-  ( ph  ->  ( ( ( abs `  A )  ^c 
( Re `  B
) )  x.  ( exp `  ( ( Im
`  B )  x.  -u ( Im `  ( log `  A ) ) ) ) )  <_ 
( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
11547, 114eqbrtrd 4052 1  |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re
`  B ) )  x.  ( exp `  (
( abs `  B
)  x.  pi ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874    + caddc 7877    x. cmul 7879    < clt 8056    <_ cle 8057    - cmin 8192   -ucneg 8193   RR+crp 9722   Recre 10987   Imcim 10988   abscabs 11144   expce 11788   picpi 11793   logclog 15032    ^c ccxp 15033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-pre-suploc 7995  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-pm 6707  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-ioo 9961  df-ioc 9962  df-ico 9963  df-icc 9964  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-shft 10962  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-e 11795  df-sin 11796  df-cos 11797  df-pi 11799  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-ntr 14275  df-cn 14367  df-cnp 14368  df-tx 14432  df-cncf 14750  df-limced 14835  df-dvap 14836  df-relog 15034  df-rpcxp 15035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator