Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemclim Unicode version

Theorem trilpolemclim 16177
Description: Lemma for trilpo 16184. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemclim.g  |-  G  =  ( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) )
Assertion
Ref Expression
trilpolemclim  |-  ( ph  ->  seq 1 (  +  ,  G )  e. 
dom 
~~>  )
Distinct variable group:    n, F
Allowed substitution hints:    ph( n)    G( n)

Proof of Theorem trilpolemclim
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 trilpolemclim.g . . . 4  |-  G  =  ( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) )
2 oveq2 5975 . . . . . 6  |-  ( n  =  k  ->  (
2 ^ n )  =  ( 2 ^ k ) )
32oveq2d 5983 . . . . 5  |-  ( n  =  k  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ k
) ) )
4 fveq2 5599 . . . . 5  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
53, 4oveq12d 5985 . . . 4  |-  ( n  =  k  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k
) ) )
6 simpr 110 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
7 2rp 9815 . . . . . . . . 9  |-  2  e.  RR+
87a1i 9 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  2  e.  RR+ )
96nnzd 9529 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ZZ )
108, 9rpexpcld 10879 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 2 ^ k )  e.  RR+ )
1110rpreccld 9864 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  RR+ )
1211rpred 9853 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  RR )
13 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( F `  k
)  =  0 )
14 0re 8107 . . . . . . 7  |-  0  e.  RR
1513, 14eqeltrdi 2298 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( F `  k
)  e.  RR )
16 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( F `  k
)  =  1 )
17 1re 8106 . . . . . . 7  |-  1  e.  RR
1816, 17eqeltrdi 2298 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( F `  k
)  e.  RR )
19 trilpolemgt1.f . . . . . . . 8  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
2019ffvelcdmda 5738 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e. 
{ 0 ,  1 } )
21 elpri 3666 . . . . . . 7  |-  ( ( F `  k )  e.  { 0 ,  1 }  ->  (
( F `  k
)  =  0  \/  ( F `  k
)  =  1 ) )
2220, 21syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k )  =  0  \/  ( F `  k )  =  1 ) )
2315, 18, 22mpjaodan 800 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
2412, 23remulcld 8138 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) )  e.  RR )
251, 5, 6, 24fvmptd3 5696 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
) )
2625, 24eqeltrd 2284 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
2711rpge0d 9857 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( 1  /  (
2 ^ k ) ) )
28 0le0 9160 . . . . . 6  |-  0  <_  0
2928, 13breqtrrid 4097 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
0  <_  ( F `  k ) )
30 0le1 8589 . . . . . 6  |-  0  <_  1
3130, 16breqtrrid 4097 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
0  <_  ( F `  k ) )
3229, 31, 22mpjaodan 800 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( F `  k
) )
3312, 23, 27, 32mulge0d 8729 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
) )
3433, 25breqtrrd 4087 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( G `  k
) )
3525adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) ) )
3613oveq2d 5983 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  0 ) )
3711rpcnd 9855 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  CC )
3837adantr 276 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( 1  /  (
2 ^ k ) )  e.  CC )
3938mul01d 8500 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  0 )  =  0 )
4035, 36, 393eqtrd 2244 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  =  0 )
4127adantr 276 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
0  <_  ( 1  /  ( 2 ^ k ) ) )
4240, 41eqbrtrd 4081 . . 3  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  <_  ( 1  /  ( 2 ^ k ) ) )
4325adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) ) )
4416oveq2d 5983 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  1 ) )
4537adantr 276 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  e.  CC )
4645mulridd 8124 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  1 )  =  ( 1  /  ( 2 ^ k ) ) )
4743, 44, 463eqtrd 2244 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  =  ( 1  /  ( 2 ^ k ) ) )
4812adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  e.  RR )
4948leidd 8622 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  <_  ( 1  /  ( 2 ^ k ) ) )
5047, 49eqbrtrd 4081 . . 3  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  <_  ( 1  /  ( 2 ^ k ) ) )
5142, 50, 22mpjaodan 800 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  <_ 
( 1  /  (
2 ^ k ) ) )
5226, 34, 51cvgcmp2n 16174 1  |-  ( ph  ->  seq 1 (  +  ,  G )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   {cpr 3644   class class class wbr 4059    |-> cmpt 4121   dom cdm 4693   -->wf 5286   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    <_ cle 8143    / cdiv 8780   NNcn 9071   2c2 9122   RR+crp 9810    seqcseq 10629   ^cexp 10720    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-ico 10051  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by:  trilpolemcl  16178  trilpolemisumle  16179  trilpolemeq1  16181  trilpolemlt1  16182  nconstwlpolemgt0  16205
  Copyright terms: Public domain W3C validator