Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemclim Unicode version

Theorem trilpolemclim 15975
Description: Lemma for trilpo 15982. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemclim.g  |-  G  =  ( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) )
Assertion
Ref Expression
trilpolemclim  |-  ( ph  ->  seq 1 (  +  ,  G )  e. 
dom 
~~>  )
Distinct variable group:    n, F
Allowed substitution hints:    ph( n)    G( n)

Proof of Theorem trilpolemclim
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 trilpolemclim.g . . . 4  |-  G  =  ( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) )
2 oveq2 5952 . . . . . 6  |-  ( n  =  k  ->  (
2 ^ n )  =  ( 2 ^ k ) )
32oveq2d 5960 . . . . 5  |-  ( n  =  k  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ k
) ) )
4 fveq2 5576 . . . . 5  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
53, 4oveq12d 5962 . . . 4  |-  ( n  =  k  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k
) ) )
6 simpr 110 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
7 2rp 9780 . . . . . . . . 9  |-  2  e.  RR+
87a1i 9 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  2  e.  RR+ )
96nnzd 9494 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ZZ )
108, 9rpexpcld 10842 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 2 ^ k )  e.  RR+ )
1110rpreccld 9829 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  RR+ )
1211rpred 9818 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  RR )
13 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( F `  k
)  =  0 )
14 0re 8072 . . . . . . 7  |-  0  e.  RR
1513, 14eqeltrdi 2296 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( F `  k
)  e.  RR )
16 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( F `  k
)  =  1 )
17 1re 8071 . . . . . . 7  |-  1  e.  RR
1816, 17eqeltrdi 2296 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( F `  k
)  e.  RR )
19 trilpolemgt1.f . . . . . . . 8  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
2019ffvelcdmda 5715 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e. 
{ 0 ,  1 } )
21 elpri 3656 . . . . . . 7  |-  ( ( F `  k )  e.  { 0 ,  1 }  ->  (
( F `  k
)  =  0  \/  ( F `  k
)  =  1 ) )
2220, 21syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k )  =  0  \/  ( F `  k )  =  1 ) )
2315, 18, 22mpjaodan 800 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
2412, 23remulcld 8103 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) )  e.  RR )
251, 5, 6, 24fvmptd3 5673 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
) )
2625, 24eqeltrd 2282 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
2711rpge0d 9822 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( 1  /  (
2 ^ k ) ) )
28 0le0 9125 . . . . . 6  |-  0  <_  0
2928, 13breqtrrid 4082 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
0  <_  ( F `  k ) )
30 0le1 8554 . . . . . 6  |-  0  <_  1
3130, 16breqtrrid 4082 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
0  <_  ( F `  k ) )
3229, 31, 22mpjaodan 800 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( F `  k
) )
3312, 23, 27, 32mulge0d 8694 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
) )
3433, 25breqtrrd 4072 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( G `  k
) )
3525adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) ) )
3613oveq2d 5960 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  0 ) )
3711rpcnd 9820 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  CC )
3837adantr 276 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( 1  /  (
2 ^ k ) )  e.  CC )
3938mul01d 8465 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  0 )  =  0 )
4035, 36, 393eqtrd 2242 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  =  0 )
4127adantr 276 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
0  <_  ( 1  /  ( 2 ^ k ) ) )
4240, 41eqbrtrd 4066 . . 3  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  <_  ( 1  /  ( 2 ^ k ) ) )
4325adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) ) )
4416oveq2d 5960 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  1 ) )
4537adantr 276 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  e.  CC )
4645mulridd 8089 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  1 )  =  ( 1  /  ( 2 ^ k ) ) )
4743, 44, 463eqtrd 2242 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  =  ( 1  /  ( 2 ^ k ) ) )
4812adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  e.  RR )
4948leidd 8587 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  <_  ( 1  /  ( 2 ^ k ) ) )
5047, 49eqbrtrd 4066 . . 3  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  <_  ( 1  /  ( 2 ^ k ) ) )
5142, 50, 22mpjaodan 800 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  <_ 
( 1  /  (
2 ^ k ) ) )
5226, 34, 51cvgcmp2n 15972 1  |-  ( ph  ->  seq 1 (  +  ,  G )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2176   {cpr 3634   class class class wbr 4044    |-> cmpt 4105   dom cdm 4675   -->wf 5267   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    <_ cle 8108    / cdiv 8745   NNcn 9036   2c2 9087   RR+crp 9775    seqcseq 10592   ^cexp 10683    ~~> cli 11589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-ico 10016  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  trilpolemcl  15976  trilpolemisumle  15977  trilpolemeq1  15979  trilpolemlt1  15980  nconstwlpolemgt0  16003
  Copyright terms: Public domain W3C validator