Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemclim Unicode version

Theorem trilpolemclim 13915
Description: Lemma for trilpo 13922. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemclim.g  |-  G  =  ( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) )
Assertion
Ref Expression
trilpolemclim  |-  ( ph  ->  seq 1 (  +  ,  G )  e. 
dom 
~~>  )
Distinct variable group:    n, F
Allowed substitution hints:    ph( n)    G( n)

Proof of Theorem trilpolemclim
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 trilpolemclim.g . . . 4  |-  G  =  ( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) )
2 oveq2 5850 . . . . . 6  |-  ( n  =  k  ->  (
2 ^ n )  =  ( 2 ^ k ) )
32oveq2d 5858 . . . . 5  |-  ( n  =  k  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ k
) ) )
4 fveq2 5486 . . . . 5  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
53, 4oveq12d 5860 . . . 4  |-  ( n  =  k  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k
) ) )
6 simpr 109 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
7 2rp 9594 . . . . . . . . 9  |-  2  e.  RR+
87a1i 9 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  2  e.  RR+ )
96nnzd 9312 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ZZ )
108, 9rpexpcld 10612 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 2 ^ k )  e.  RR+ )
1110rpreccld 9643 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  RR+ )
1211rpred 9632 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  RR )
13 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( F `  k
)  =  0 )
14 0re 7899 . . . . . . 7  |-  0  e.  RR
1513, 14eqeltrdi 2257 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( F `  k
)  e.  RR )
16 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( F `  k
)  =  1 )
17 1re 7898 . . . . . . 7  |-  1  e.  RR
1816, 17eqeltrdi 2257 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( F `  k
)  e.  RR )
19 trilpolemgt1.f . . . . . . . 8  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
2019ffvelrnda 5620 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e. 
{ 0 ,  1 } )
21 elpri 3599 . . . . . . 7  |-  ( ( F `  k )  e.  { 0 ,  1 }  ->  (
( F `  k
)  =  0  \/  ( F `  k
)  =  1 ) )
2220, 21syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k )  =  0  \/  ( F `  k )  =  1 ) )
2315, 18, 22mpjaodan 788 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
2412, 23remulcld 7929 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) )  e.  RR )
251, 5, 6, 24fvmptd3 5579 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
) )
2625, 24eqeltrd 2243 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
2711rpge0d 9636 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( 1  /  (
2 ^ k ) ) )
28 0le0 8946 . . . . . 6  |-  0  <_  0
2928, 13breqtrrid 4020 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
0  <_  ( F `  k ) )
30 0le1 8379 . . . . . 6  |-  0  <_  1
3130, 16breqtrrid 4020 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
0  <_  ( F `  k ) )
3229, 31, 22mpjaodan 788 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( F `  k
) )
3312, 23, 27, 32mulge0d 8519 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
) )
3433, 25breqtrrd 4010 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( G `  k
) )
3525adantr 274 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) ) )
3613oveq2d 5858 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  0 ) )
3711rpcnd 9634 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  CC )
3837adantr 274 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( 1  /  (
2 ^ k ) )  e.  CC )
3938mul01d 8291 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  0 )  =  0 )
4035, 36, 393eqtrd 2202 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  =  0 )
4127adantr 274 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
0  <_  ( 1  /  ( 2 ^ k ) ) )
4240, 41eqbrtrd 4004 . . 3  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  <_  ( 1  /  ( 2 ^ k ) ) )
4325adantr 274 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) ) )
4416oveq2d 5858 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  1 ) )
4537adantr 274 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  e.  CC )
4645mulid1d 7916 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  1 )  =  ( 1  /  ( 2 ^ k ) ) )
4743, 44, 463eqtrd 2202 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  =  ( 1  /  ( 2 ^ k ) ) )
4812adantr 274 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  e.  RR )
4948leidd 8412 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  <_  ( 1  /  ( 2 ^ k ) ) )
5047, 49eqbrtrd 4004 . . 3  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  <_  ( 1  /  ( 2 ^ k ) ) )
5142, 50, 22mpjaodan 788 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  <_ 
( 1  /  (
2 ^ k ) ) )
5226, 34, 51cvgcmp2n 13912 1  |-  ( ph  ->  seq 1 (  +  ,  G )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   {cpr 3577   class class class wbr 3982    |-> cmpt 4043   dom cdm 4604   -->wf 5184   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    <_ cle 7934    / cdiv 8568   NNcn 8857   2c2 8908   RR+crp 9589    seqcseq 10380   ^cexp 10454    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  trilpolemcl  13916  trilpolemisumle  13917  trilpolemeq1  13919  trilpolemlt1  13920  nconstwlpolemgt0  13942
  Copyright terms: Public domain W3C validator