Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemclim Unicode version

Theorem trilpolemclim 15680
Description: Lemma for trilpo 15687. Convergence of the series. (Contributed by Jim Kingdon, 24-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemclim.g  |-  G  =  ( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) )
Assertion
Ref Expression
trilpolemclim  |-  ( ph  ->  seq 1 (  +  ,  G )  e. 
dom 
~~>  )
Distinct variable group:    n, F
Allowed substitution hints:    ph( n)    G( n)

Proof of Theorem trilpolemclim
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 trilpolemclim.g . . . 4  |-  G  =  ( n  e.  NN  |->  ( ( 1  / 
( 2 ^ n
) )  x.  ( F `  n )
) )
2 oveq2 5930 . . . . . 6  |-  ( n  =  k  ->  (
2 ^ n )  =  ( 2 ^ k ) )
32oveq2d 5938 . . . . 5  |-  ( n  =  k  ->  (
1  /  ( 2 ^ n ) )  =  ( 1  / 
( 2 ^ k
) ) )
4 fveq2 5558 . . . . 5  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
53, 4oveq12d 5940 . . . 4  |-  ( n  =  k  ->  (
( 1  /  (
2 ^ n ) )  x.  ( F `
 n ) )  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k
) ) )
6 simpr 110 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
7 2rp 9733 . . . . . . . . 9  |-  2  e.  RR+
87a1i 9 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  2  e.  RR+ )
96nnzd 9447 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  ZZ )
108, 9rpexpcld 10789 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 2 ^ k )  e.  RR+ )
1110rpreccld 9782 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  RR+ )
1211rpred 9771 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  RR )
13 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( F `  k
)  =  0 )
14 0re 8026 . . . . . . 7  |-  0  e.  RR
1513, 14eqeltrdi 2287 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( F `  k
)  e.  RR )
16 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( F `  k
)  =  1 )
17 1re 8025 . . . . . . 7  |-  1  e.  RR
1816, 17eqeltrdi 2287 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( F `  k
)  e.  RR )
19 trilpolemgt1.f . . . . . . . 8  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
2019ffvelcdmda 5697 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e. 
{ 0 ,  1 } )
21 elpri 3645 . . . . . . 7  |-  ( ( F `  k )  e.  { 0 ,  1 }  ->  (
( F `  k
)  =  0  \/  ( F `  k
)  =  1 ) )
2220, 21syl 14 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k )  =  0  \/  ( F `  k )  =  1 ) )
2315, 18, 22mpjaodan 799 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  RR )
2412, 23remulcld 8057 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) )  e.  RR )
251, 5, 6, 24fvmptd3 5655 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  =  ( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
) )
2625, 24eqeltrd 2273 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
2711rpge0d 9775 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( 1  /  (
2 ^ k ) ) )
28 0le0 9079 . . . . . 6  |-  0  <_  0
2928, 13breqtrrid 4071 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
0  <_  ( F `  k ) )
30 0le1 8508 . . . . . 6  |-  0  <_  1
3130, 16breqtrrid 4071 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
0  <_  ( F `  k ) )
3229, 31, 22mpjaodan 799 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( F `  k
) )
3312, 23, 27, 32mulge0d 8648 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
) )
3433, 25breqtrrd 4061 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( G `  k
) )
3525adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) ) )
3613oveq2d 5938 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  0 ) )
3711rpcnd 9773 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( 1  /  ( 2 ^ k ) )  e.  CC )
3837adantr 276 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( 1  /  (
2 ^ k ) )  e.  CC )
3938mul01d 8419 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  0 )  =  0 )
4035, 36, 393eqtrd 2233 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  =  0 )
4127adantr 276 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
0  <_  ( 1  /  ( 2 ^ k ) ) )
4240, 41eqbrtrd 4055 . . 3  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  0 )  -> 
( G `  k
)  <_  ( 1  /  ( 2 ^ k ) ) )
4325adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  ( F `  k ) ) )
4416oveq2d 5938 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  ( F `  k )
)  =  ( ( 1  /  ( 2 ^ k ) )  x.  1 ) )
4537adantr 276 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  e.  CC )
4645mulridd 8043 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( ( 1  / 
( 2 ^ k
) )  x.  1 )  =  ( 1  /  ( 2 ^ k ) ) )
4743, 44, 463eqtrd 2233 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  =  ( 1  /  ( 2 ^ k ) ) )
4812adantr 276 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  e.  RR )
4948leidd 8541 . . . 4  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( 1  /  (
2 ^ k ) )  <_  ( 1  /  ( 2 ^ k ) ) )
5047, 49eqbrtrd 4055 . . 3  |-  ( ( ( ph  /\  k  e.  NN )  /\  ( F `  k )  =  1 )  -> 
( G `  k
)  <_  ( 1  /  ( 2 ^ k ) ) )
5142, 50, 22mpjaodan 799 . 2  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  <_ 
( 1  /  (
2 ^ k ) ) )
5226, 34, 51cvgcmp2n 15677 1  |-  ( ph  ->  seq 1 (  +  ,  G )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   {cpr 3623   class class class wbr 4033    |-> cmpt 4094   dom cdm 4663   -->wf 5254   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    <_ cle 8062    / cdiv 8699   NNcn 8990   2c2 9041   RR+crp 9728    seqcseq 10539   ^cexp 10630    ~~> cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  trilpolemcl  15681  trilpolemisumle  15682  trilpolemeq1  15684  trilpolemlt1  15685  nconstwlpolemgt0  15708
  Copyright terms: Public domain W3C validator