ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brrelex2 Unicode version

Theorem brrelex2 4548
Description: A true binary relation on a relation implies the second argument is a set. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex2  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )

Proof of Theorem brrelex2
StepHypRef Expression
1 brrelex12 4545 . 2  |-  ( ( Rel  R  /\  A R B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
21simprd 113 1  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1463   _Vcvv 2658   class class class wbr 3897   Rel wrel 4512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-xp 4513  df-rel 4514
This theorem is referenced by:  brrelex2i  4551  releldm  4742  relelrn  4743  elreimasng  4873  funbrfv  5426  ertr  6410  erth  6439
  Copyright terms: Public domain W3C validator