ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelrn Unicode version

Theorem relelrn 4835
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.)
Assertion
Ref Expression
relelrn  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  ran  R )

Proof of Theorem relelrn
StepHypRef Expression
1 brrelex 4639 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  _V )
2 brrelex2 4640 . 2  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
3 simpr 109 . 2  |-  ( ( Rel  R  /\  A R B )  ->  A R B )
4 brelrng 4830 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  A R B )  ->  B  e.  ran  R )
51, 2, 3, 4syl3anc 1227 1  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2135   _Vcvv 2722   class class class wbr 3977   ran crn 4600   Rel wrel 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2724  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-br 3978  df-opab 4039  df-xp 4605  df-rel 4606  df-cnv 4607  df-dm 4609  df-rn 4610
This theorem is referenced by:  relelrnb  4837  relelrni  4839  relfvssunirn  5497
  Copyright terms: Public domain W3C validator