Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvun | Unicode version |
Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 4619 | . . 3 | |
2 | unopab 4068 | . . . 4 | |
3 | brun 4040 | . . . . 5 | |
4 | 3 | opabbii 4056 | . . . 4 |
5 | 2, 4 | eqtr4i 2194 | . . 3 |
6 | 1, 5 | eqtr4i 2194 | . 2 |
7 | df-cnv 4619 | . . 3 | |
8 | df-cnv 4619 | . . 3 | |
9 | 7, 8 | uneq12i 3279 | . 2 |
10 | 6, 9 | eqtr4i 2194 | 1 |
Colors of variables: wff set class |
Syntax hints: wo 703 wceq 1348 cun 3119 class class class wbr 3989 copab 4049 ccnv 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-br 3990 df-opab 4051 df-cnv 4619 |
This theorem is referenced by: rnun 5019 f1oun 5462 sbthlemi8 6941 caseinj 7066 djuinj 7083 |
Copyright terms: Public domain | W3C validator |