| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvun | Unicode version | ||
| Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 4701 |
. . 3
| |
| 2 | unopab 4139 |
. . . 4
| |
| 3 | brun 4111 |
. . . . 5
| |
| 4 | 3 | opabbii 4127 |
. . . 4
|
| 5 | 2, 4 | eqtr4i 2231 |
. . 3
|
| 6 | 1, 5 | eqtr4i 2231 |
. 2
|
| 7 | df-cnv 4701 |
. . 3
| |
| 8 | df-cnv 4701 |
. . 3
| |
| 9 | 7, 8 | uneq12i 3333 |
. 2
|
| 10 | 6, 9 | eqtr4i 2231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-br 4060 df-opab 4122 df-cnv 4701 |
| This theorem is referenced by: rnun 5110 f1oun 5564 sbthlemi8 7092 caseinj 7217 djuinj 7234 xnn0nnen 10619 |
| Copyright terms: Public domain | W3C validator |