ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvun Unicode version

Theorem cnvun 5036
Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvun  |-  `' ( A  u.  B )  =  ( `' A  u.  `' B )

Proof of Theorem cnvun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 4636 . . 3  |-  `' ( A  u.  B )  =  { <. x ,  y >.  |  y ( A  u.  B
) x }
2 unopab 4084 . . . 4  |-  ( {
<. x ,  y >.  |  y A x }  u.  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  ( y A x  \/  y B x ) }
3 brun 4056 . . . . 5  |-  ( y ( A  u.  B
) x  <->  ( y A x  \/  y B x ) )
43opabbii 4072 . . . 4  |-  { <. x ,  y >.  |  y ( A  u.  B
) x }  =  { <. x ,  y
>.  |  ( y A x  \/  y B x ) }
52, 4eqtr4i 2201 . . 3  |-  ( {
<. x ,  y >.  |  y A x }  u.  { <. x ,  y >.  |  y B x } )  =  { <. x ,  y >.  |  y ( A  u.  B
) x }
61, 5eqtr4i 2201 . 2  |-  `' ( A  u.  B )  =  ( { <. x ,  y >.  |  y A x }  u.  {
<. x ,  y >.  |  y B x } )
7 df-cnv 4636 . . 3  |-  `' A  =  { <. x ,  y
>.  |  y A x }
8 df-cnv 4636 . . 3  |-  `' B  =  { <. x ,  y
>.  |  y B x }
97, 8uneq12i 3289 . 2  |-  ( `' A  u.  `' B
)  =  ( {
<. x ,  y >.  |  y A x }  u.  { <. x ,  y >.  |  y B x } )
106, 9eqtr4i 2201 1  |-  `' ( A  u.  B )  =  ( `' A  u.  `' B )
Colors of variables: wff set class
Syntax hints:    \/ wo 708    = wceq 1353    u. cun 3129   class class class wbr 4005   {copab 4065   `'ccnv 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-br 4006  df-opab 4067  df-cnv 4636
This theorem is referenced by:  rnun  5039  f1oun  5483  sbthlemi8  6965  caseinj  7090  djuinj  7107
  Copyright terms: Public domain W3C validator