ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovassd Unicode version

Theorem caovassd 6012
Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovassg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
caovassd.2  |-  ( ph  ->  A  e.  S )
caovassd.3  |-  ( ph  ->  B  e.  S )
caovassd.4  |-  ( ph  ->  C  e.  S )
Assertion
Ref Expression
caovassd  |-  ( ph  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caovassd
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 caovassd.2 . 2  |-  ( ph  ->  A  e.  S )
3 caovassd.3 . 2  |-  ( ph  ->  B  e.  S )
4 caovassd.4 . 2  |-  ( ph  ->  C  e.  S )
5 caovassg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
65caovassg 6011 . 2  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )  -> 
( ( A F B ) F C )  =  ( A F ( B F C ) ) )
71, 2, 3, 4, 6syl13anc 1235 1  |-  ( ph  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  caov32d  6033  caov12d  6034  caov13d  6036  caov4d  6037  caovdilemd  6044  caovimo  6046  enq0tr  7396  prarloclemlo  7456  ltsosr  7726  grprinvlem  12639  grprinvd  12640  grpridd  12641  grprcan  12740
  Copyright terms: Public domain W3C validator