| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovassd | Unicode version | ||
| Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovassg.1 |
|
| caovassd.2 |
|
| caovassd.3 |
|
| caovassd.4 |
|
| Ref | Expression |
|---|---|
| caovassd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | caovassd.2 |
. 2
| |
| 3 | caovassd.3 |
. 2
| |
| 4 | caovassd.4 |
. 2
| |
| 5 | caovassg.1 |
. . 3
| |
| 6 | 5 | caovassg 6164 |
. 2
|
| 7 | 1, 2, 3, 4, 6 | syl13anc 1273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: caov32d 6186 caov12d 6187 caov13d 6189 caov4d 6190 caovdilemd 6197 caovimo 6199 enq0tr 7621 prarloclemlo 7681 ltsosr 7951 seqf1oglem2a 10740 grpinvalem 13418 grpinva 13419 grprida 13420 grprcan 13570 |
| Copyright terms: Public domain | W3C validator |