ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovassd Unicode version

Theorem caovassd 6078
Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovassg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
caovassd.2  |-  ( ph  ->  A  e.  S )
caovassd.3  |-  ( ph  ->  B  e.  S )
caovassd.4  |-  ( ph  ->  C  e.  S )
Assertion
Ref Expression
caovassd  |-  ( ph  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caovassd
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 caovassd.2 . 2  |-  ( ph  ->  A  e.  S )
3 caovassd.3 . 2  |-  ( ph  ->  B  e.  S )
4 caovassd.4 . 2  |-  ( ph  ->  C  e.  S )
5 caovassg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
65caovassg 6077 . 2  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )  -> 
( ( A F B ) F C )  =  ( A F ( B F C ) ) )
71, 2, 3, 4, 6syl13anc 1251 1  |-  ( ph  ->  ( ( A F B ) F C )  =  ( A F ( B F C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164  (class class class)co 5918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  caov32d  6099  caov12d  6100  caov13d  6102  caov4d  6103  caovdilemd  6110  caovimo  6112  enq0tr  7494  prarloclemlo  7554  ltsosr  7824  seqf1oglem2a  10589  grpinvalem  12968  grpinva  12969  grprida  12970  grprcan  13109
  Copyright terms: Public domain W3C validator