ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdid Unicode version

Theorem caovdid 6122
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovdig.1  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
caovdid.2  |-  ( ph  ->  A  e.  K )
caovdid.3  |-  ( ph  ->  B  e.  S )
caovdid.4  |-  ( ph  ->  C  e.  S )
Assertion
Ref Expression
caovdid  |-  ( ph  ->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, G, y, z   
x, H, y, z   
x, K, y, z   
x, S, y, z

Proof of Theorem caovdid
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 caovdid.2 . 2  |-  ( ph  ->  A  e.  K )
3 caovdid.3 . 2  |-  ( ph  ->  B  e.  S )
4 caovdid.4 . 2  |-  ( ph  ->  C  e.  S )
5 caovdig.1 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
65caovdig 6121 . 2  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
71, 2, 3, 4, 6syl13anc 1252 1  |-  ( ph  ->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176  (class class class)co 5944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947
This theorem is referenced by:  caovdir2d  6123  caovlem2d  6139  caofdig  6192  ltanqg  7513
  Copyright terms: Public domain W3C validator