ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdir2d Unicode version

Theorem caovdir2d 6136
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovdir2d.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) ) )
caovdir2d.2  |-  ( ph  ->  A  e.  S )
caovdir2d.3  |-  ( ph  ->  B  e.  S )
caovdir2d.4  |-  ( ph  ->  C  e.  S )
caovdir2d.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
caovdir2d.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x G y )  =  ( y G x ) )
Assertion
Ref Expression
caovdir2d  |-  ( ph  ->  ( ( A F B ) G C )  =  ( ( A G C ) F ( B G C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, G, y, z   
x, S, y, z

Proof of Theorem caovdir2d
StepHypRef Expression
1 caovdir2d.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) ) )
2 caovdir2d.4 . . 3  |-  ( ph  ->  C  e.  S )
3 caovdir2d.2 . . 3  |-  ( ph  ->  A  e.  S )
4 caovdir2d.3 . . 3  |-  ( ph  ->  B  e.  S )
51, 2, 3, 4caovdid 6135 . 2  |-  ( ph  ->  ( C G ( A F B ) )  =  ( ( C G A ) F ( C G B ) ) )
6 caovdir2d.com . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x G y )  =  ( y G x ) )
7 caovdir2d.cl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
87, 3, 4caovcld 6113 . . 3  |-  ( ph  ->  ( A F B )  e.  S )
96, 8, 2caovcomd 6116 . 2  |-  ( ph  ->  ( ( A F B ) G C )  =  ( C G ( A F B ) ) )
106, 3, 2caovcomd 6116 . . 3  |-  ( ph  ->  ( A G C )  =  ( C G A ) )
116, 4, 2caovcomd 6116 . . 3  |-  ( ph  ->  ( B G C )  =  ( C G B ) )
1210, 11oveq12d 5975 . 2  |-  ( ph  ->  ( ( A G C ) F ( B G C ) )  =  ( ( C G A ) F ( C G B ) ) )
135, 9, 123eqtr4d 2249 1  |-  ( ph  ->  ( ( A F B ) G C )  =  ( ( A G C ) F ( B G C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177  (class class class)co 5957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  addcmpblnq  7500  ltanqg  7533  addcmpblnq0  7576  mulasssrg  7891  mulgt0sr  7911  mulextsr1lem  7913
  Copyright terms: Public domain W3C validator