ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltanqg Unicode version

Theorem ltanqg 7548
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltanqg  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )

Proof of Theorem ltanqg
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7496 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 4062 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  A  <Q  [
<. z ,  w >. ]  ~Q  ) )
3 oveq2 5975 . . . 4  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. v ,  u >. ]  ~Q  +Q  [
<. x ,  y >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  +Q  A
) )
43breq1d 4069 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y
>. ]  ~Q  )  <Q 
( [ <. v ,  u >. ]  ~Q  +Q  [
<. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  +Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  +Q  [
<. z ,  w >. ]  ~Q  ) ) )
52, 4bibi12d 235 . 2  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  ) )  <-> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  +Q  A
)  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  ) ) ) )
6 breq2 4063 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  A 
<Q  B ) )
7 oveq2 5975 . . . 4  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( [ <. v ,  u >. ]  ~Q  +Q  [
<. z ,  w >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  +Q  B
) )
87breq2d 4071 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( [ <. v ,  u >. ]  ~Q  +Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  +Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  +Q  B ) ) )
96, 8bibi12d 235 . 2  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  +Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  ) )  <->  ( A  <Q  B  <->  ( [ <. v ,  u >. ]  ~Q  +Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  B
) ) ) )
10 oveq1 5974 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  +Q  A )  =  ( C  +Q  A ) )
11 oveq1 5974 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  +Q  B )  =  ( C  +Q  B ) )
1210, 11breq12d 4072 . . 3  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( [ <. v ,  u >. ]  ~Q  +Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  B
)  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
1312bibi2d 232 . 2  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( A  <Q  B  <-> 
( [ <. v ,  u >. ]  ~Q  +Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  B
) )  <->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) ) )
14 addclpi 7475 . . . . . 6  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  +N  g
)  e.  N. )
1514adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  +N  g
)  e.  N. )
16 simp3l 1028 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  v  e.  N. )
17 simp1r 1025 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  y  e.  N. )
18 mulclpi 7476 . . . . . 6  |-  ( ( v  e.  N.  /\  y  e.  N. )  ->  ( v  .N  y
)  e.  N. )
1916, 17, 18syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  y )  e.  N. )
20 simp3r 1029 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  u  e.  N. )
21 simp1l 1024 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  x  e.  N. )
22 mulclpi 7476 . . . . . 6  |-  ( ( u  e.  N.  /\  x  e.  N. )  ->  ( u  .N  x
)  e.  N. )
2320, 21, 22syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  x )  e.  N. )
2415, 19, 23caovcld 6123 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
v  .N  y )  +N  ( u  .N  x ) )  e. 
N. )
25 mulclpi 7476 . . . . 5  |-  ( ( u  e.  N.  /\  y  e.  N. )  ->  ( u  .N  y
)  e.  N. )
2620, 17, 25syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  y )  e.  N. )
27 mulclpi 7476 . . . . . . 7  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  e.  N. )
2827adantl 277 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  e.  N. )
29 simp2r 1027 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  w  e.  N. )
3028, 16, 29caovcld 6123 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  w )  e.  N. )
31 simp2l 1026 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  z  e.  N. )
32 mulclpi 7476 . . . . . 6  |-  ( ( u  e.  N.  /\  z  e.  N. )  ->  ( u  .N  z
)  e.  N. )
3320, 31, 32syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  z )  e.  N. )
3415, 30, 33caovcld 6123 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
v  .N  w )  +N  ( u  .N  z ) )  e. 
N. )
35 mulclpi 7476 . . . . 5  |-  ( ( u  e.  N.  /\  w  e.  N. )  ->  ( u  .N  w
)  e.  N. )
3620, 29, 35syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  w )  e.  N. )
37 ordpipqqs 7522 . . . 4  |-  ( ( ( ( ( v  .N  y )  +N  ( u  .N  x
) )  e.  N.  /\  ( u  .N  y
)  e.  N. )  /\  ( ( ( v  .N  w )  +N  ( u  .N  z
) )  e.  N.  /\  ( u  .N  w
)  e.  N. )
)  ->  ( [ <. ( ( v  .N  y )  +N  (
u  .N  x ) ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
( v  .N  w
)  +N  ( u  .N  z ) ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( ( v  .N  y )  +N  (
u  .N  x ) )  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
( v  .N  w
)  +N  ( u  .N  z ) ) ) ) )
3824, 26, 34, 36, 37syl22anc 1251 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. ( ( v  .N  y )  +N  (
u  .N  x ) ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
( v  .N  w
)  +N  ( u  .N  z ) ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( ( v  .N  y )  +N  (
u  .N  x ) )  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
( v  .N  w
)  +N  ( u  .N  z ) ) ) ) )
39 simp3 1002 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  e.  N.  /\  u  e. 
N. ) )
40 simp1 1000 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( x  e.  N.  /\  y  e. 
N. ) )
41 addpipqqs 7518 . . . . 5  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( x  e.  N.  /\  y  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
( v  .N  y
)  +N  ( u  .N  x ) ) ,  ( u  .N  y ) >. ]  ~Q  )
4239, 40, 41syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
( v  .N  y
)  +N  ( u  .N  x ) ) ,  ( u  .N  y ) >. ]  ~Q  )
43 simp2 1001 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  e.  N.  /\  w  e. 
N. ) )
44 addpipqqs 7518 . . . . 5  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
( v  .N  w
)  +N  ( u  .N  z ) ) ,  ( u  .N  w ) >. ]  ~Q  )
4539, 43, 44syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
( v  .N  w
)  +N  ( u  .N  z ) ) ,  ( u  .N  w ) >. ]  ~Q  )
4642, 45breq12d 4072 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  <->  [ <. (
( v  .N  y
)  +N  ( u  .N  x ) ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. ( ( v  .N  w )  +N  ( u  .N  z
) ) ,  ( u  .N  w )
>. ]  ~Q  ) )
47 ordpipqqs 7522 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
48473adant3 1020 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
49 mulclpi 7476 . . . . . 6  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
5021, 29, 49syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( x  .N  w )  e.  N. )
51 mulclpi 7476 . . . . . 6  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  e.  N. )
5217, 31, 51syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  z )  e.  N. )
53 mulclpi 7476 . . . . . 6  |-  ( ( u  e.  N.  /\  u  e.  N. )  ->  ( u  .N  u
)  e.  N. )
5420, 20, 53syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  u )  e.  N. )
55 ltmpig 7487 . . . . 5  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N.  /\  ( u  .N  u
)  e.  N. )  ->  ( ( x  .N  w )  <N  (
y  .N  z )  <-> 
( ( u  .N  u )  .N  (
x  .N  w ) )  <N  ( (
u  .N  u )  .N  ( y  .N  z ) ) ) )
5650, 52, 54, 55syl3anc 1250 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  w ) 
<N  ( y  .N  z
)  <->  ( ( u  .N  u )  .N  ( x  .N  w
) )  <N  (
( u  .N  u
)  .N  ( y  .N  z ) ) ) )
57 mulclpi 7476 . . . . . . 7  |-  ( ( ( u  .N  x
)  e.  N.  /\  ( u  .N  w
)  e.  N. )  ->  ( ( u  .N  x )  .N  (
u  .N  w ) )  e.  N. )
5823, 36, 57syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  x )  .N  ( u  .N  w ) )  e. 
N. )
59 mulclpi 7476 . . . . . . 7  |-  ( ( ( u  .N  y
)  e.  N.  /\  ( u  .N  z
)  e.  N. )  ->  ( ( u  .N  y )  .N  (
u  .N  z ) )  e.  N. )
6026, 33, 59syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( u  .N  z ) )  e. 
N. )
61 mulclpi 7476 . . . . . . 7  |-  ( ( ( v  .N  y
)  e.  N.  /\  ( u  .N  w
)  e.  N. )  ->  ( ( v  .N  y )  .N  (
u  .N  w ) )  e.  N. )
6219, 36, 61syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
v  .N  y )  .N  ( u  .N  w ) )  e. 
N. )
63 ltapig 7486 . . . . . 6  |-  ( ( ( ( u  .N  x )  .N  (
u  .N  w ) )  e.  N.  /\  ( ( u  .N  y )  .N  (
u  .N  z ) )  e.  N.  /\  ( ( v  .N  y )  .N  (
u  .N  w ) )  e.  N. )  ->  ( ( ( u  .N  x )  .N  ( u  .N  w
) )  <N  (
( u  .N  y
)  .N  ( u  .N  z ) )  <-> 
( ( ( v  .N  y )  .N  ( u  .N  w
) )  +N  (
( u  .N  x
)  .N  ( u  .N  w ) ) )  <N  ( (
( v  .N  y
)  .N  ( u  .N  w ) )  +N  ( ( u  .N  y )  .N  ( u  .N  z
) ) ) ) )
6458, 60, 62, 63syl3anc 1250 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( u  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
u  .N  z ) )  <->  ( ( ( v  .N  y )  .N  ( u  .N  w ) )  +N  ( ( u  .N  x )  .N  (
u  .N  w ) ) )  <N  (
( ( v  .N  y )  .N  (
u  .N  w ) )  +N  ( ( u  .N  y )  .N  ( u  .N  z ) ) ) ) )
65 mulcompig 7479 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  =  ( g  .N  f ) )
6665adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  =  ( g  .N  f ) )
67 mulasspig 7480 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
6867adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
6920, 20, 21, 66, 68, 29, 28caov4d 6154 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  u )  .N  ( x  .N  w ) )  =  ( ( u  .N  x )  .N  (
u  .N  w ) ) )
7020, 20, 17, 66, 68, 31, 28caov4d 6154 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  u )  .N  ( y  .N  z ) )  =  ( ( u  .N  y )  .N  (
u  .N  z ) ) )
7169, 70breq12d 4072 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( u  .N  u
)  .N  ( x  .N  w ) ) 
<N  ( ( u  .N  u )  .N  (
y  .N  z ) )  <->  ( ( u  .N  x )  .N  ( u  .N  w
) )  <N  (
( u  .N  y
)  .N  ( u  .N  z ) ) ) )
72 distrpig 7481 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
f  .N  ( g  +N  h ) )  =  ( ( f  .N  g )  +N  ( f  .N  h
) ) )
7372adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
f  .N  ( g  +N  h ) )  =  ( ( f  .N  g )  +N  ( f  .N  h
) ) )
7473, 19, 23, 36, 15, 66caovdir2d 6146 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( v  .N  y
)  +N  ( u  .N  x ) )  .N  ( u  .N  w ) )  =  ( ( ( v  .N  y )  .N  ( u  .N  w
) )  +N  (
( u  .N  x
)  .N  ( u  .N  w ) ) ) )
7573, 26, 30, 33caovdid 6145 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( ( v  .N  w )  +N  ( u  .N  z
) ) )  =  ( ( ( u  .N  y )  .N  ( v  .N  w
) )  +N  (
( u  .N  y
)  .N  ( u  .N  z ) ) ) )
7620, 17, 16, 66, 68, 29, 28caov411d 6155 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( v  .N  w ) )  =  ( ( v  .N  y )  .N  (
u  .N  w ) ) )
7776oveq1d 5982 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( u  .N  y
)  .N  ( v  .N  w ) )  +N  ( ( u  .N  y )  .N  ( u  .N  z
) ) )  =  ( ( ( v  .N  y )  .N  ( u  .N  w
) )  +N  (
( u  .N  y
)  .N  ( u  .N  z ) ) ) )
7875, 77eqtrd 2240 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( ( v  .N  w )  +N  ( u  .N  z
) ) )  =  ( ( ( v  .N  y )  .N  ( u  .N  w
) )  +N  (
( u  .N  y
)  .N  ( u  .N  z ) ) ) )
7974, 78breq12d 4072 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( ( v  .N  y )  +N  (
u  .N  x ) )  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
( v  .N  w
)  +N  ( u  .N  z ) ) )  <->  ( ( ( v  .N  y )  .N  ( u  .N  w ) )  +N  ( ( u  .N  x )  .N  (
u  .N  w ) ) )  <N  (
( ( v  .N  y )  .N  (
u  .N  w ) )  +N  ( ( u  .N  y )  .N  ( u  .N  z ) ) ) ) )
8064, 71, 793bitr4d 220 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( u  .N  u
)  .N  ( x  .N  w ) ) 
<N  ( ( u  .N  u )  .N  (
y  .N  z ) )  <->  ( ( ( v  .N  y )  +N  ( u  .N  x ) )  .N  ( u  .N  w
) )  <N  (
( u  .N  y
)  .N  ( ( v  .N  w )  +N  ( u  .N  z ) ) ) ) )
8148, 56, 803bitrd 214 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( (
( v  .N  y
)  +N  ( u  .N  x ) )  .N  ( u  .N  w ) )  <N 
( ( u  .N  y )  .N  (
( v  .N  w
)  +N  ( u  .N  z ) ) ) ) )
8238, 46, 813bitr4rd 221 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  ) ) )
831, 5, 9, 13, 823ecoptocl 6734 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   <.cop 3646   class class class wbr 4059  (class class class)co 5967   [cec 6641   N.cnpi 7420    +N cpli 7421    .N cmi 7422    <N clti 7423    ~Q ceq 7427   Q.cnq 7428    +Q cplq 7430    <Q cltq 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-ltnqqs 7501
This theorem is referenced by:  ltanqi  7550  lt2addnq  7552  ltaddnq  7555  prarloclemlt  7641  prarloclemcalc  7650  addlocprlemgt  7682  addclpr  7685  prmuloclemcalc  7713  distrlem4prl  7732  distrlem4pru  7733  ltexprlemopl  7749  ltexprlemopu  7751  ltexprlemdisj  7754  ltexprlemloc  7755  ltexprlemfl  7757  ltexprlemfu  7759  aptiprleml  7787  aptiprlemu  7788  cauappcvgprlemopl  7794  cauappcvgprlemlol  7795  cauappcvgprlemdisj  7799  cauappcvgprlemloc  7800  cauappcvgprlemladdfu  7802  cauappcvgprlemladdru  7804  cauappcvgprlemladdrl  7805  cauappcvgprlem1  7807  caucvgprlemnkj  7814  caucvgprlemnbj  7815  caucvgprlemm  7816  caucvgprlemopl  7817  caucvgprlemlol  7818  caucvgprlemloc  7823  caucvgprlemladdfu  7825  caucvgprlemladdrl  7826  caucvgprprlemml  7842  caucvgprprlemopl  7845  caucvgprprlemlol  7846
  Copyright terms: Public domain W3C validator