ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltanqg Unicode version

Theorem ltanqg 7467
Description: Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltanqg  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )

Proof of Theorem ltanqg
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7415 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 4036 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  A  <Q  [
<. z ,  w >. ]  ~Q  ) )
3 oveq2 5930 . . . 4  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( [ <. v ,  u >. ]  ~Q  +Q  [
<. x ,  y >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  +Q  A
) )
43breq1d 4043 . . 3  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y
>. ]  ~Q  )  <Q 
( [ <. v ,  u >. ]  ~Q  +Q  [
<. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  +Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  +Q  [
<. z ,  w >. ]  ~Q  ) ) )
52, 4bibi12d 235 . 2  |-  ( [
<. x ,  y >. ]  ~Q  =  A  -> 
( ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  ) )  <-> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  +Q  A
)  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  ) ) ) )
6 breq2 4037 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( A  <Q  [ <. z ,  w >. ]  ~Q  <->  A 
<Q  B ) )
7 oveq2 5930 . . . 4  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( [ <. v ,  u >. ]  ~Q  +Q  [
<. z ,  w >. ]  ~Q  )  =  ( [ <. v ,  u >. ]  ~Q  +Q  B
) )
87breq2d 4045 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( [ <. v ,  u >. ]  ~Q  +Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  <->  ( [ <. v ,  u >. ]  ~Q  +Q  A ) 
<Q  ( [ <. v ,  u >. ]  ~Q  +Q  B ) ) )
96, 8bibi12d 235 . 2  |-  ( [
<. z ,  w >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  +Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  ) )  <->  ( A  <Q  B  <->  ( [ <. v ,  u >. ]  ~Q  +Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  B
) ) ) )
10 oveq1 5929 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  +Q  A )  =  ( C  +Q  A ) )
11 oveq1 5929 . . . 4  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( [ <. v ,  u >. ]  ~Q  +Q  B )  =  ( C  +Q  B ) )
1210, 11breq12d 4046 . . 3  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( [ <. v ,  u >. ]  ~Q  +Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  B
)  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
1312bibi2d 232 . 2  |-  ( [
<. v ,  u >. ]  ~Q  =  C  -> 
( ( A  <Q  B  <-> 
( [ <. v ,  u >. ]  ~Q  +Q  A )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  B
) )  <->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) ) )
14 addclpi 7394 . . . . . 6  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  +N  g
)  e.  N. )
1514adantl 277 . . . . 5  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  +N  g
)  e.  N. )
16 simp3l 1027 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  v  e.  N. )
17 simp1r 1024 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  y  e.  N. )
18 mulclpi 7395 . . . . . 6  |-  ( ( v  e.  N.  /\  y  e.  N. )  ->  ( v  .N  y
)  e.  N. )
1916, 17, 18syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  y )  e.  N. )
20 simp3r 1028 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  u  e.  N. )
21 simp1l 1023 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  x  e.  N. )
22 mulclpi 7395 . . . . . 6  |-  ( ( u  e.  N.  /\  x  e.  N. )  ->  ( u  .N  x
)  e.  N. )
2320, 21, 22syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  x )  e.  N. )
2415, 19, 23caovcld 6077 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
v  .N  y )  +N  ( u  .N  x ) )  e. 
N. )
25 mulclpi 7395 . . . . 5  |-  ( ( u  e.  N.  /\  y  e.  N. )  ->  ( u  .N  y
)  e.  N. )
2620, 17, 25syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  y )  e.  N. )
27 mulclpi 7395 . . . . . . 7  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  e.  N. )
2827adantl 277 . . . . . 6  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  e.  N. )
29 simp2r 1026 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  w  e.  N. )
3028, 16, 29caovcld 6077 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  .N  w )  e.  N. )
31 simp2l 1025 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  z  e.  N. )
32 mulclpi 7395 . . . . . 6  |-  ( ( u  e.  N.  /\  z  e.  N. )  ->  ( u  .N  z
)  e.  N. )
3320, 31, 32syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  z )  e.  N. )
3415, 30, 33caovcld 6077 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
v  .N  w )  +N  ( u  .N  z ) )  e. 
N. )
35 mulclpi 7395 . . . . 5  |-  ( ( u  e.  N.  /\  w  e.  N. )  ->  ( u  .N  w
)  e.  N. )
3620, 29, 35syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  w )  e.  N. )
37 ordpipqqs 7441 . . . 4  |-  ( ( ( ( ( v  .N  y )  +N  ( u  .N  x
) )  e.  N.  /\  ( u  .N  y
)  e.  N. )  /\  ( ( ( v  .N  w )  +N  ( u  .N  z
) )  e.  N.  /\  ( u  .N  w
)  e.  N. )
)  ->  ( [ <. ( ( v  .N  y )  +N  (
u  .N  x ) ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
( v  .N  w
)  +N  ( u  .N  z ) ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( ( v  .N  y )  +N  (
u  .N  x ) )  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
( v  .N  w
)  +N  ( u  .N  z ) ) ) ) )
3824, 26, 34, 36, 37syl22anc 1250 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. ( ( v  .N  y )  +N  (
u  .N  x ) ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. (
( v  .N  w
)  +N  ( u  .N  z ) ) ,  ( u  .N  w ) >. ]  ~Q  <->  ( ( ( v  .N  y )  +N  (
u  .N  x ) )  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
( v  .N  w
)  +N  ( u  .N  z ) ) ) ) )
39 simp3 1001 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( v  e.  N.  /\  u  e. 
N. ) )
40 simp1 999 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( x  e.  N.  /\  y  e. 
N. ) )
41 addpipqqs 7437 . . . . 5  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( x  e.  N.  /\  y  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
( v  .N  y
)  +N  ( u  .N  x ) ) ,  ( u  .N  y ) >. ]  ~Q  )
4239, 40, 41syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  =  [ <. (
( v  .N  y
)  +N  ( u  .N  x ) ) ,  ( u  .N  y ) >. ]  ~Q  )
43 simp2 1000 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( z  e.  N.  /\  w  e. 
N. ) )
44 addpipqqs 7437 . . . . 5  |-  ( ( ( v  e.  N.  /\  u  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
( v  .N  w
)  +N  ( u  .N  z ) ) ,  ( u  .N  w ) >. ]  ~Q  )
4539, 43, 44syl2anc 411 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  =  [ <. (
( v  .N  w
)  +N  ( u  .N  z ) ) ,  ( u  .N  w ) >. ]  ~Q  )
4642, 45breq12d 4046 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  )  <->  [ <. (
( v  .N  y
)  +N  ( u  .N  x ) ) ,  ( u  .N  y ) >. ]  ~Q  <Q  [ <. ( ( v  .N  w )  +N  ( u  .N  z
) ) ,  ( u  .N  w )
>. ]  ~Q  ) )
47 ordpipqqs 7441 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
48473adant3 1019 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( x  .N  w )  <N  (
y  .N  z ) ) )
49 mulclpi 7395 . . . . . 6  |-  ( ( x  e.  N.  /\  w  e.  N. )  ->  ( x  .N  w
)  e.  N. )
5021, 29, 49syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( x  .N  w )  e.  N. )
51 mulclpi 7395 . . . . . 6  |-  ( ( y  e.  N.  /\  z  e.  N. )  ->  ( y  .N  z
)  e.  N. )
5217, 31, 51syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( y  .N  z )  e.  N. )
53 mulclpi 7395 . . . . . 6  |-  ( ( u  e.  N.  /\  u  e.  N. )  ->  ( u  .N  u
)  e.  N. )
5420, 20, 53syl2anc 411 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( u  .N  u )  e.  N. )
55 ltmpig 7406 . . . . 5  |-  ( ( ( x  .N  w
)  e.  N.  /\  ( y  .N  z
)  e.  N.  /\  ( u  .N  u
)  e.  N. )  ->  ( ( x  .N  w )  <N  (
y  .N  z )  <-> 
( ( u  .N  u )  .N  (
x  .N  w ) )  <N  ( (
u  .N  u )  .N  ( y  .N  z ) ) ) )
5650, 52, 54, 55syl3anc 1249 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
x  .N  w ) 
<N  ( y  .N  z
)  <->  ( ( u  .N  u )  .N  ( x  .N  w
) )  <N  (
( u  .N  u
)  .N  ( y  .N  z ) ) ) )
57 mulclpi 7395 . . . . . . 7  |-  ( ( ( u  .N  x
)  e.  N.  /\  ( u  .N  w
)  e.  N. )  ->  ( ( u  .N  x )  .N  (
u  .N  w ) )  e.  N. )
5823, 36, 57syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  x )  .N  ( u  .N  w ) )  e. 
N. )
59 mulclpi 7395 . . . . . . 7  |-  ( ( ( u  .N  y
)  e.  N.  /\  ( u  .N  z
)  e.  N. )  ->  ( ( u  .N  y )  .N  (
u  .N  z ) )  e.  N. )
6026, 33, 59syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( u  .N  z ) )  e. 
N. )
61 mulclpi 7395 . . . . . . 7  |-  ( ( ( v  .N  y
)  e.  N.  /\  ( u  .N  w
)  e.  N. )  ->  ( ( v  .N  y )  .N  (
u  .N  w ) )  e.  N. )
6219, 36, 61syl2anc 411 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
v  .N  y )  .N  ( u  .N  w ) )  e. 
N. )
63 ltapig 7405 . . . . . 6  |-  ( ( ( ( u  .N  x )  .N  (
u  .N  w ) )  e.  N.  /\  ( ( u  .N  y )  .N  (
u  .N  z ) )  e.  N.  /\  ( ( v  .N  y )  .N  (
u  .N  w ) )  e.  N. )  ->  ( ( ( u  .N  x )  .N  ( u  .N  w
) )  <N  (
( u  .N  y
)  .N  ( u  .N  z ) )  <-> 
( ( ( v  .N  y )  .N  ( u  .N  w
) )  +N  (
( u  .N  x
)  .N  ( u  .N  w ) ) )  <N  ( (
( v  .N  y
)  .N  ( u  .N  w ) )  +N  ( ( u  .N  y )  .N  ( u  .N  z
) ) ) ) )
6458, 60, 62, 63syl3anc 1249 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( u  .N  x
)  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
u  .N  z ) )  <->  ( ( ( v  .N  y )  .N  ( u  .N  w ) )  +N  ( ( u  .N  x )  .N  (
u  .N  w ) ) )  <N  (
( ( v  .N  y )  .N  (
u  .N  w ) )  +N  ( ( u  .N  y )  .N  ( u  .N  z ) ) ) ) )
65 mulcompig 7398 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N. )  ->  ( f  .N  g
)  =  ( g  .N  f ) )
6665adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N. ) )  -> 
( f  .N  g
)  =  ( g  .N  f ) )
67 mulasspig 7399 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
6867adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
( f  .N  g
)  .N  h )  =  ( f  .N  ( g  .N  h
) ) )
6920, 20, 21, 66, 68, 29, 28caov4d 6108 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  u )  .N  ( x  .N  w ) )  =  ( ( u  .N  x )  .N  (
u  .N  w ) ) )
7020, 20, 17, 66, 68, 31, 28caov4d 6108 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  u )  .N  ( y  .N  z ) )  =  ( ( u  .N  y )  .N  (
u  .N  z ) ) )
7169, 70breq12d 4046 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( u  .N  u
)  .N  ( x  .N  w ) ) 
<N  ( ( u  .N  u )  .N  (
y  .N  z ) )  <->  ( ( u  .N  x )  .N  ( u  .N  w
) )  <N  (
( u  .N  y
)  .N  ( u  .N  z ) ) ) )
72 distrpig 7400 . . . . . . . 8  |-  ( ( f  e.  N.  /\  g  e.  N.  /\  h  e.  N. )  ->  (
f  .N  ( g  +N  h ) )  =  ( ( f  .N  g )  +N  ( f  .N  h
) ) )
7372adantl 277 . . . . . . 7  |-  ( ( ( ( x  e. 
N.  /\  y  e.  N. )  /\  (
z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  /\  ( f  e.  N.  /\  g  e. 
N.  /\  h  e.  N. ) )  ->  (
f  .N  ( g  +N  h ) )  =  ( ( f  .N  g )  +N  ( f  .N  h
) ) )
7473, 19, 23, 36, 15, 66caovdir2d 6100 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( v  .N  y
)  +N  ( u  .N  x ) )  .N  ( u  .N  w ) )  =  ( ( ( v  .N  y )  .N  ( u  .N  w
) )  +N  (
( u  .N  x
)  .N  ( u  .N  w ) ) ) )
7573, 26, 30, 33caovdid 6099 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( ( v  .N  w )  +N  ( u  .N  z
) ) )  =  ( ( ( u  .N  y )  .N  ( v  .N  w
) )  +N  (
( u  .N  y
)  .N  ( u  .N  z ) ) ) )
7620, 17, 16, 66, 68, 29, 28caov411d 6109 . . . . . . . 8  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( v  .N  w ) )  =  ( ( v  .N  y )  .N  (
u  .N  w ) ) )
7776oveq1d 5937 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( u  .N  y
)  .N  ( v  .N  w ) )  +N  ( ( u  .N  y )  .N  ( u  .N  z
) ) )  =  ( ( ( v  .N  y )  .N  ( u  .N  w
) )  +N  (
( u  .N  y
)  .N  ( u  .N  z ) ) ) )
7875, 77eqtrd 2229 . . . . . 6  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
u  .N  y )  .N  ( ( v  .N  w )  +N  ( u  .N  z
) ) )  =  ( ( ( v  .N  y )  .N  ( u  .N  w
) )  +N  (
( u  .N  y
)  .N  ( u  .N  z ) ) ) )
7974, 78breq12d 4046 . . . . 5  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( ( v  .N  y )  +N  (
u  .N  x ) )  .N  ( u  .N  w ) ) 
<N  ( ( u  .N  y )  .N  (
( v  .N  w
)  +N  ( u  .N  z ) ) )  <->  ( ( ( v  .N  y )  .N  ( u  .N  w ) )  +N  ( ( u  .N  x )  .N  (
u  .N  w ) ) )  <N  (
( ( v  .N  y )  .N  (
u  .N  w ) )  +N  ( ( u  .N  y )  .N  ( u  .N  z ) ) ) ) )
8064, 71, 793bitr4d 220 . . . 4  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( (
( u  .N  u
)  .N  ( x  .N  w ) ) 
<N  ( ( u  .N  u )  .N  (
y  .N  z ) )  <->  ( ( ( v  .N  y )  +N  ( u  .N  x ) )  .N  ( u  .N  w
) )  <N  (
( u  .N  y
)  .N  ( ( v  .N  w )  +N  ( u  .N  z ) ) ) ) )
8148, 56, 803bitrd 214 . . 3  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( (
( v  .N  y
)  +N  ( u  .N  x ) )  .N  ( u  .N  w ) )  <N 
( ( u  .N  y )  .N  (
( v  .N  w
)  +N  ( u  .N  z ) ) ) ) )
8238, 46, 813bitr4rd 221 . 2  |-  ( ( ( x  e.  N.  /\  y  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )  /\  ( v  e.  N.  /\  u  e.  N. )
)  ->  ( [ <. x ,  y >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. x ,  y >. ]  ~Q  )  <Q  ( [ <. v ,  u >. ]  ~Q  +Q  [ <. z ,  w >. ]  ~Q  ) ) )
831, 5, 9, 13, 823ecoptocl 6683 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  ( A  <Q  B  <->  ( C  +Q  A )  <Q  ( C  +Q  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   <.cop 3625   class class class wbr 4033  (class class class)co 5922   [cec 6590   N.cnpi 7339    +N cpli 7340    .N cmi 7341    <N clti 7342    ~Q ceq 7346   Q.cnq 7347    +Q cplq 7349    <Q cltq 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-ltnqqs 7420
This theorem is referenced by:  ltanqi  7469  lt2addnq  7471  ltaddnq  7474  prarloclemlt  7560  prarloclemcalc  7569  addlocprlemgt  7601  addclpr  7604  prmuloclemcalc  7632  distrlem4prl  7651  distrlem4pru  7652  ltexprlemopl  7668  ltexprlemopu  7670  ltexprlemdisj  7673  ltexprlemloc  7674  ltexprlemfl  7676  ltexprlemfu  7678  aptiprleml  7706  aptiprlemu  7707  cauappcvgprlemopl  7713  cauappcvgprlemlol  7714  cauappcvgprlemdisj  7718  cauappcvgprlemloc  7719  cauappcvgprlemladdfu  7721  cauappcvgprlemladdru  7723  cauappcvgprlemladdrl  7724  cauappcvgprlem1  7726  caucvgprlemnkj  7733  caucvgprlemnbj  7734  caucvgprlemm  7735  caucvgprlemopl  7736  caucvgprlemlol  7737  caucvgprlemloc  7742  caucvgprlemladdfu  7744  caucvgprlemladdrl  7745  caucvgprprlemml  7761  caucvgprprlemopl  7764  caucvgprprlemlol  7765
  Copyright terms: Public domain W3C validator