![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caovdid | GIF version |
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovdig.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) |
caovdid.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
caovdid.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovdid.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
Ref | Expression |
---|---|
caovdid | ⊢ (𝜑 → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | caovdid.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
3 | caovdid.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | caovdid.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
5 | caovdig.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) | |
6 | 5 | caovdig 6085 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
7 | 1, 2, 3, 4, 6 | syl13anc 1251 | 1 ⊢ (𝜑 → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 (class class class)co 5910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5207 df-fv 5254 df-ov 5913 |
This theorem is referenced by: caovdir2d 6087 caovlem2d 6103 caofdig 6151 ltanqg 7450 |
Copyright terms: Public domain | W3C validator |