Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grprinvd | Unicode version |
Description: Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grprinvlem.c | |
grprinvlem.o | |
grprinvlem.i | |
grprinvlem.a | |
grprinvlem.n | |
grprinvd.x | |
grprinvd.n | |
grprinvd.e |
Ref | Expression |
---|---|
grprinvd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grprinvlem.c | . 2 | |
2 | grprinvlem.o | . 2 | |
3 | grprinvlem.i | . 2 | |
4 | grprinvlem.a | . 2 | |
5 | grprinvlem.n | . 2 | |
6 | 1 | 3expb 1194 | . . . . 5 |
7 | 6 | caovclg 5994 | . . . 4 |
8 | 7 | adantlr 469 | . . 3 |
9 | grprinvd.x | . . 3 | |
10 | grprinvd.n | . . 3 | |
11 | 8, 9, 10 | caovcld 5995 | . 2 |
12 | 4 | caovassg 6000 | . . . . 5 |
13 | 12 | adantlr 469 | . . . 4 |
14 | 13, 9, 10, 11 | caovassd 6001 | . . 3 |
15 | grprinvd.e | . . . . . 6 | |
16 | 15 | oveq1d 5857 | . . . . 5 |
17 | 13, 10, 9, 10 | caovassd 6001 | . . . . 5 |
18 | oveq2 5850 | . . . . . . 7 | |
19 | id 19 | . . . . . . 7 | |
20 | 18, 19 | eqeq12d 2180 | . . . . . 6 |
21 | 3 | ralrimiva 2539 | . . . . . . . 8 |
22 | oveq2 5850 | . . . . . . . . . 10 | |
23 | id 19 | . . . . . . . . . 10 | |
24 | 22, 23 | eqeq12d 2180 | . . . . . . . . 9 |
25 | 24 | cbvralvw 2696 | . . . . . . . 8 |
26 | 21, 25 | sylib 121 | . . . . . . 7 |
27 | 26 | adantr 274 | . . . . . 6 |
28 | 20, 27, 10 | rspcdva 2835 | . . . . 5 |
29 | 16, 17, 28 | 3eqtr3d 2206 | . . . 4 |
30 | 29 | oveq2d 5858 | . . 3 |
31 | 14, 30 | eqtrd 2198 | . 2 |
32 | 1, 2, 3, 4, 5, 11, 31 | grprinvlem 12616 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wral 2444 wrex 2445 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: grpridd 12618 |
Copyright terms: Public domain | W3C validator |