ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg4m Unicode version

Theorem issubg4m 13323
Description: A subgroup is an inhabited subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
issubg4.b  |-  B  =  ( Base `  G
)
issubg4.p  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
issubg4m  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  E. w  w  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S ) ) )
Distinct variable groups:    x, y, w, B    x, G, y, w    x,  .- , y    x, S, y, w
Allowed substitution hint:    .- ( w)

Proof of Theorem issubg4m
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 issubg4.b . . . 4  |-  B  =  ( Base `  G
)
21subgss 13304 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  B
)
3 eqid 2196 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
43subg0cl 13312 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
5 elex2 2779 . . . 4  |-  ( ( 0g `  G )  e.  S  ->  E. w  w  e.  S )
64, 5syl 14 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  E. w  w  e.  S )
7 issubg4.p . . . . . 6  |-  .-  =  ( -g `  G )
87subgsubcl 13315 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x  .-  y )  e.  S )
983expb 1206 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .-  y )  e.  S
)
109ralrimivva 2579 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
112, 6, 103jca 1179 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  C_  B  /\  E. w  w  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S ) )
12 simplrl 535 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  S  C_  B )
13 simplrr 536 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  E. w  w  e.  S )
14 oveq1 5929 . . . . . . . . . . . . 13  |-  ( x  =  ( 0g `  G )  ->  (
x  .-  y )  =  ( ( 0g
`  G )  .-  y ) )
1514eleq1d 2265 . . . . . . . . . . . 12  |-  ( x  =  ( 0g `  G )  ->  (
( x  .-  y
)  e.  S  <->  ( ( 0g `  G )  .-  y )  e.  S
) )
1615ralbidv 2497 . . . . . . . . . . 11  |-  ( x  =  ( 0g `  G )  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  <->  A. y  e.  S  ( ( 0g `  G )  .-  y )  e.  S
) )
17 simpr 110 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
18 simprr 531 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S
) )  ->  E. w  w  e.  S )
19 r19.2m 3537 . . . . . . . . . . . . 13  |-  ( ( E. w  w  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  E. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
2018, 19sylan 283 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  E. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)
21 oveq2 5930 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  x  ->  (
x  .-  y )  =  ( x  .-  x ) )
2221eleq1d 2265 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  (
( x  .-  y
)  e.  S  <->  ( x  .-  x )  e.  S
) )
2322rspcv 2864 . . . . . . . . . . . . . . . 16  |-  ( x  e.  S  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  ->  (
x  .-  x )  e.  S ) )
2423adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  x  e.  S )  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  ->  ( x  .-  x
)  e.  S ) )
25 simprl 529 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S
) )  ->  S  C_  B )
2625sselda 3183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  x  e.  S )  ->  x  e.  B )
271, 3, 7grpsubid 13216 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( x  .-  x
)  =  ( 0g
`  G ) )
2827adantlr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  x  e.  B )  ->  ( x  .-  x
)  =  ( 0g
`  G ) )
2926, 28syldan 282 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  x  e.  S )  ->  ( x  .-  x
)  =  ( 0g
`  G ) )
3029eleq1d 2265 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  x  e.  S )  ->  ( ( x  .-  x )  e.  S  <->  ( 0g `  G )  e.  S ) )
3124, 30sylibd 149 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  x  e.  S )  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  ->  ( 0g `  G
)  e.  S ) )
3231rexlimdva 2614 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S
) )  ->  ( E. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S  ->  ( 0g `  G )  e.  S ) )
3332imp 124 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  E. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  ( 0g `  G )  e.  S )
3420, 33syldan 282 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  ( 0g `  G )  e.  S )
3516, 17, 34rspcdva 2873 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  A. y  e.  S  ( ( 0g `  G )  .-  y )  e.  S
)
361, 3grpidcl 13161 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
3736ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  y  e.  S )  ->  ( 0g `  G
)  e.  B )
3825sselda 3183 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  y  e.  S )  ->  y  e.  B )
39 eqid 2196 . . . . . . . . . . . . . . . 16  |-  ( +g  `  G )  =  ( +g  `  G )
40 eqid 2196 . . . . . . . . . . . . . . . 16  |-  ( invg `  G )  =  ( invg `  G )
411, 39, 40, 7grpsubval 13178 . . . . . . . . . . . . . . 15  |-  ( ( ( 0g `  G
)  e.  B  /\  y  e.  B )  ->  ( ( 0g `  G )  .-  y
)  =  ( ( 0g `  G ) ( +g  `  G
) ( ( invg `  G ) `
 y ) ) )
4237, 38, 41syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  y  e.  S )  ->  ( ( 0g `  G )  .-  y
)  =  ( ( 0g `  G ) ( +g  `  G
) ( ( invg `  G ) `
 y ) ) )
43 simpll 527 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  y  e.  S )  ->  G  e.  Grp )
441, 40grpinvcl 13180 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( ( invg `  G ) `  y
)  e.  B )
4543, 38, 44syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  y  e.  S )  ->  ( ( invg `  G ) `  y
)  e.  B )
461, 39, 3grplid 13163 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  ( ( invg `  G ) `  y
)  e.  B )  ->  ( ( 0g
`  G ) ( +g  `  G ) ( ( invg `  G ) `  y
) )  =  ( ( invg `  G ) `  y
) )
4743, 45, 46syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  y  e.  S )  ->  ( ( 0g `  G ) ( +g  `  G ) ( ( invg `  G
) `  y )
)  =  ( ( invg `  G
) `  y )
)
4842, 47eqtrd 2229 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  y  e.  S )  ->  ( ( 0g `  G )  .-  y
)  =  ( ( invg `  G
) `  y )
)
4948eleq1d 2265 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  y  e.  S )  ->  ( ( ( 0g
`  G )  .-  y )  e.  S  <->  ( ( invg `  G ) `  y
)  e.  S ) )
5049ralbidva 2493 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S
) )  ->  ( A. y  e.  S  ( ( 0g `  G )  .-  y
)  e.  S  <->  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S ) )
5150adantr 276 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  ( A. y  e.  S  ( ( 0g `  G )  .-  y
)  e.  S  <->  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S ) )
5235, 51mpbid 147 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )
53 fveq2 5558 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( invg `  G ) `  y
)  =  ( ( invg `  G
) `  z )
)
5453eleq1d 2265 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
( ( invg `  G ) `  y
)  e.  S  <->  ( ( invg `  G ) `
 z )  e.  S ) )
5554rspccva 2867 . . . . . . . . . . . . . . . 16  |-  ( ( A. y  e.  S  ( ( invg `  G ) `  y
)  e.  S  /\  z  e.  S )  ->  ( ( invg `  G ) `  z
)  e.  S )
5655ad2ant2l 508 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  E. w  w  e.  S )
)  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  /\  (
x  e.  S  /\  z  e.  S )
)  ->  ( ( invg `  G ) `
 z )  e.  S )
57 oveq2 5930 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( ( invg `  G ) `
 z )  -> 
( x  .-  y
)  =  ( x 
.-  ( ( invg `  G ) `
 z ) ) )
5857eleq1d 2265 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( ( invg `  G ) `
 z )  -> 
( ( x  .-  y )  e.  S  <->  ( x  .-  ( ( invg `  G
) `  z )
)  e.  S ) )
5958rspcv 2864 . . . . . . . . . . . . . . 15  |-  ( ( ( invg `  G ) `  z
)  e.  S  -> 
( A. y  e.  S  ( x  .-  y )  e.  S  ->  ( x  .-  (
( invg `  G ) `  z
) )  e.  S
) )
6056, 59syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  E. w  w  e.  S )
)  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  /\  (
x  e.  S  /\  z  e.  S )
)  ->  ( A. y  e.  S  (
x  .-  y )  e.  S  ->  ( x 
.-  ( ( invg `  G ) `
 z ) )  e.  S ) )
61 simplll 533 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  E. w  w  e.  S )
)  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  /\  (
x  e.  S  /\  z  e.  S )
)  ->  G  e.  Grp )
6226ad2ant2r 509 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  E. w  w  e.  S )
)  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  /\  (
x  e.  S  /\  z  e.  S )
)  ->  x  e.  B )
6325ad2antrr 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  E. w  w  e.  S )
)  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  /\  (
x  e.  S  /\  z  e.  S )
)  ->  S  C_  B
)
64 simprr 531 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  E. w  w  e.  S )
)  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  /\  (
x  e.  S  /\  z  e.  S )
)  ->  z  e.  S )
6563, 64sseldd 3184 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  E. w  w  e.  S )
)  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  /\  (
x  e.  S  /\  z  e.  S )
)  ->  z  e.  B )
661, 39, 7, 40, 61, 62, 65grpsubinv 13205 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  E. w  w  e.  S )
)  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  /\  (
x  e.  S  /\  z  e.  S )
)  ->  ( x  .-  ( ( invg `  G ) `  z
) )  =  ( x ( +g  `  G
) z ) )
6766eleq1d 2265 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  E. w  w  e.  S )
)  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  /\  (
x  e.  S  /\  z  e.  S )
)  ->  ( (
x  .-  ( ( invg `  G ) `
 z ) )  e.  S  <->  ( x
( +g  `  G ) z )  e.  S
) )
6860, 67sylibd 149 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  E. w  w  e.  S )
)  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  /\  (
x  e.  S  /\  z  e.  S )
)  ->  ( A. y  e.  S  (
x  .-  y )  e.  S  ->  ( x ( +g  `  G
) z )  e.  S ) )
6968anassrs 400 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S
) )  /\  A. y  e.  S  (
( invg `  G ) `  y
)  e.  S )  /\  x  e.  S
)  /\  z  e.  S )  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  ->  (
x ( +g  `  G
) z )  e.  S ) )
7069ralrimdva 2577 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  ( S  C_  B  /\  E. w  w  e.  S )
)  /\  A. y  e.  S  ( ( invg `  G ) `
 y )  e.  S )  /\  x  e.  S )  ->  ( A. y  e.  S  ( x  .-  y )  e.  S  ->  A. z  e.  S  ( x
( +g  `  G ) z )  e.  S
) )
7170ralimdva 2564 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. y  e.  S  ( ( invg `  G ) `  y
)  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S  ->  A. x  e.  S  A. z  e.  S  ( x ( +g  `  G ) z )  e.  S ) )
7271impancom 260 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  ( A. y  e.  S  ( ( invg `  G ) `  y
)  e.  S  ->  A. x  e.  S  A. z  e.  S  ( x ( +g  `  G ) z )  e.  S ) )
7352, 72mpd 13 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  A. x  e.  S  A. z  e.  S  ( x
( +g  `  G ) z )  e.  S
)
74 oveq1 5929 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x ( +g  `  G
) z )  =  ( y ( +g  `  G ) z ) )
7574eleq1d 2265 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( x ( +g  `  G ) z )  e.  S  <->  ( y
( +g  `  G ) z )  e.  S
) )
7675ralbidv 2497 . . . . . . . . 9  |-  ( x  =  y  ->  ( A. z  e.  S  ( x ( +g  `  G ) z )  e.  S  <->  A. z  e.  S  ( y
( +g  `  G ) z )  e.  S
) )
7776cbvralvw 2733 . . . . . . . 8  |-  ( A. x  e.  S  A. z  e.  S  (
x ( +g  `  G
) z )  e.  S  <->  A. y  e.  S  A. z  e.  S  ( y ( +g  `  G ) z )  e.  S )
7873, 77sylib 122 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  A. y  e.  S  A. z  e.  S  ( y
( +g  `  G ) z )  e.  S
)
79 r19.26 2623 . . . . . . 7  |-  ( A. y  e.  S  ( A. z  e.  S  ( y ( +g  `  G ) z )  e.  S  /\  (
( invg `  G ) `  y
)  e.  S )  <-> 
( A. y  e.  S  A. z  e.  S  ( y ( +g  `  G ) z )  e.  S  /\  A. y  e.  S  ( ( invg `  G ) `  y
)  e.  S ) )
8078, 52, 79sylanbrc 417 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  A. y  e.  S  ( A. z  e.  S  (
y ( +g  `  G
) z )  e.  S  /\  ( ( invg `  G
) `  y )  e.  S ) )
8112, 13, 803jca 1179 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. w  w  e.  S ) )  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S )  ->  ( S  C_  B  /\  E. w  w  e.  S  /\  A. y  e.  S  ( A. z  e.  S  ( y ( +g  `  G ) z )  e.  S  /\  (
( invg `  G ) `  y
)  e.  S ) ) )
8281exp42 371 . . . 4  |-  ( G  e.  Grp  ->  ( S  C_  B  ->  ( E. w  w  e.  S  ->  ( A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S  ->  ( S  C_  B  /\  E. w  w  e.  S  /\  A. y  e.  S  ( A. z  e.  S  (
y ( +g  `  G
) z )  e.  S  /\  ( ( invg `  G
) `  y )  e.  S ) ) ) ) ) )
83823impd 1223 . . 3  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  E. w  w  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  ( S  C_  B  /\  E. w  w  e.  S  /\  A. y  e.  S  ( A. z  e.  S  ( y ( +g  `  G ) z )  e.  S  /\  (
( invg `  G ) `  y
)  e.  S ) ) ) )
841, 39, 40issubg2m 13319 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  E. w  w  e.  S  /\  A. y  e.  S  ( A. z  e.  S  ( y ( +g  `  G ) z )  e.  S  /\  (
( invg `  G ) `  y
)  e.  S ) ) ) )
8583, 84sylibrd 169 . 2  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  E. w  w  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .-  y )  e.  S
)  ->  S  e.  (SubGrp `  G ) ) )
8611, 85impbid2 143 1  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  E. w  w  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .-  y )  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132   invgcminusg 13133   -gcsg 13134  SubGrpcsubg 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator