Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grprinvlem | Unicode version |
Description: Lemma for grprinvd 6013. (Contributed by NM, 9-Aug-2013.) |
Ref | Expression |
---|---|
grprinvlem.c | |
grprinvlem.o | |
grprinvlem.i | |
grprinvlem.a | |
grprinvlem.n | |
grprinvlem.x | |
grprinvlem.e |
Ref | Expression |
---|---|
grprinvlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grprinvlem.x | . . 3 | |
2 | grprinvlem.n | . . . . . 6 | |
3 | 2 | ralrimiva 2530 | . . . . 5 |
4 | oveq2 5829 | . . . . . . . 8 | |
5 | 4 | eqeq1d 2166 | . . . . . . 7 |
6 | 5 | rexbidv 2458 | . . . . . 6 |
7 | 6 | cbvralv 2680 | . . . . 5 |
8 | 3, 7 | sylib 121 | . . . 4 |
9 | oveq2 5829 | . . . . . . 7 | |
10 | 9 | eqeq1d 2166 | . . . . . 6 |
11 | 10 | rexbidv 2458 | . . . . 5 |
12 | 11 | rspccva 2815 | . . . 4 |
13 | 8, 12 | sylan 281 | . . 3 |
14 | 1, 13 | syldan 280 | . 2 |
15 | grprinvlem.e | . . . . 5 | |
16 | 15 | oveq2d 5837 | . . . 4 |
17 | 16 | adantr 274 | . . 3 |
18 | simprr 522 | . . . . 5 | |
19 | 18 | oveq1d 5836 | . . . 4 |
20 | simpll 519 | . . . . . 6 | |
21 | grprinvlem.a | . . . . . . 7 | |
22 | 21 | caovassg 5976 | . . . . . 6 |
23 | 20, 22 | sylan 281 | . . . . 5 |
24 | simprl 521 | . . . . 5 | |
25 | 1 | adantr 274 | . . . . 5 |
26 | 23, 24, 25, 25 | caovassd 5977 | . . . 4 |
27 | oveq2 5829 | . . . . . . 7 | |
28 | id 19 | . . . . . . 7 | |
29 | 27, 28 | eqeq12d 2172 | . . . . . 6 |
30 | grprinvlem.i | . . . . . . . . 9 | |
31 | 30 | ralrimiva 2530 | . . . . . . . 8 |
32 | oveq2 5829 | . . . . . . . . . 10 | |
33 | id 19 | . . . . . . . . . 10 | |
34 | 32, 33 | eqeq12d 2172 | . . . . . . . . 9 |
35 | 34 | cbvralv 2680 | . . . . . . . 8 |
36 | 31, 35 | sylib 121 | . . . . . . 7 |
37 | 36 | adantr 274 | . . . . . 6 |
38 | 29, 37, 1 | rspcdva 2821 | . . . . 5 |
39 | 38 | adantr 274 | . . . 4 |
40 | 19, 26, 39 | 3eqtr3d 2198 | . . 3 |
41 | 17, 40, 18 | 3eqtr3d 2198 | . 2 |
42 | 14, 41 | rexlimddv 2579 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1335 wcel 2128 wral 2435 wrex 2436 (class class class)co 5821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5134 df-fv 5177 df-ov 5824 |
This theorem is referenced by: grprinvd 6013 |
Copyright terms: Public domain | W3C validator |