Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grprinvlem | Unicode version |
Description: Lemma for grprinvd 12617. (Contributed by NM, 9-Aug-2013.) |
Ref | Expression |
---|---|
grprinvlem.c | |
grprinvlem.o | |
grprinvlem.i | |
grprinvlem.a | |
grprinvlem.n | |
grprinvlem.x | |
grprinvlem.e |
Ref | Expression |
---|---|
grprinvlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grprinvlem.n | . . . . 5 | |
2 | 1 | ralrimiva 2539 | . . . 4 |
3 | oveq2 5850 | . . . . . . 7 | |
4 | 3 | eqeq1d 2174 | . . . . . 6 |
5 | 4 | rexbidv 2467 | . . . . 5 |
6 | 5 | cbvralvw 2696 | . . . 4 |
7 | 2, 6 | sylib 121 | . . 3 |
8 | grprinvlem.x | . . 3 | |
9 | oveq2 5850 | . . . . . 6 | |
10 | 9 | eqeq1d 2174 | . . . . 5 |
11 | 10 | rexbidv 2467 | . . . 4 |
12 | 11 | rspccva 2829 | . . 3 |
13 | 7, 8, 12 | syl2an2r 585 | . 2 |
14 | grprinvlem.e | . . . . 5 | |
15 | 14 | oveq2d 5858 | . . . 4 |
16 | 15 | adantr 274 | . . 3 |
17 | simprr 522 | . . . . 5 | |
18 | 17 | oveq1d 5857 | . . . 4 |
19 | grprinvlem.a | . . . . . . 7 | |
20 | 19 | caovassg 6000 | . . . . . 6 |
21 | 20 | ad4ant14 506 | . . . . 5 |
22 | simprl 521 | . . . . 5 | |
23 | 8 | adantr 274 | . . . . 5 |
24 | 21, 22, 23, 23 | caovassd 6001 | . . . 4 |
25 | oveq2 5850 | . . . . . . 7 | |
26 | id 19 | . . . . . . 7 | |
27 | 25, 26 | eqeq12d 2180 | . . . . . 6 |
28 | grprinvlem.i | . . . . . . . . 9 | |
29 | 28 | ralrimiva 2539 | . . . . . . . 8 |
30 | oveq2 5850 | . . . . . . . . . 10 | |
31 | id 19 | . . . . . . . . . 10 | |
32 | 30, 31 | eqeq12d 2180 | . . . . . . . . 9 |
33 | 32 | cbvralvw 2696 | . . . . . . . 8 |
34 | 29, 33 | sylib 121 | . . . . . . 7 |
35 | 34 | adantr 274 | . . . . . 6 |
36 | 27, 35, 8 | rspcdva 2835 | . . . . 5 |
37 | 36 | adantr 274 | . . . 4 |
38 | 18, 24, 37 | 3eqtr3d 2206 | . . 3 |
39 | 16, 38, 17 | 3eqtr3d 2206 | . 2 |
40 | 13, 39 | rexlimddv 2588 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wral 2444 wrex 2445 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: grprinvd 12617 |
Copyright terms: Public domain | W3C validator |