ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc1 Unicode version

Theorem cc1 7239
Description: Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Assertion
Ref Expression
cc1  |-  (CCHOICE  ->  A. x
( ( x  ~~  om 
/\  A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
Distinct variable groups:    w, f, z   
x, f, z

Proof of Theorem cc1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  -> CCHOICE )
2 simprl 529 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  x  ~~  om )
3 simprr 531 . . . . . . 7  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  A. z  e.  x  E. w  w  e.  z )
4 elequ2 2151 . . . . . . . . 9  |-  ( z  =  a  ->  (
w  e.  z  <->  w  e.  a ) )
54exbidv 1823 . . . . . . . 8  |-  ( z  =  a  ->  ( E. w  w  e.  z 
<->  E. w  w  e.  a ) )
65cbvralvw 2705 . . . . . . 7  |-  ( A. z  e.  x  E. w  w  e.  z  <->  A. a  e.  x  E. w  w  e.  a
)
73, 6sylib 122 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  A. a  e.  x  E. w  w  e.  a )
81, 2, 7ccfunen 7238 . . . . 5  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f
( f  Fn  x  /\  A. a  e.  x  ( f `  a
)  e.  a ) )
9 exsimpr 1616 . . . . 5  |-  ( E. f ( f  Fn  x  /\  A. a  e.  x  ( f `  a )  e.  a )  ->  E. f A. a  e.  x  ( f `  a
)  e.  a )
108, 9syl 14 . . . 4  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f A. a  e.  x  ( f `  a
)  e.  a )
11 fveq2 5507 . . . . . . 7  |-  ( a  =  z  ->  (
f `  a )  =  ( f `  z ) )
12 id 19 . . . . . . 7  |-  ( a  =  z  ->  a  =  z )
1311, 12eleq12d 2246 . . . . . 6  |-  ( a  =  z  ->  (
( f `  a
)  e.  a  <->  ( f `  z )  e.  z ) )
1413cbvralvw 2705 . . . . 5  |-  ( A. a  e.  x  (
f `  a )  e.  a  <->  A. z  e.  x  ( f `  z
)  e.  z )
1514exbii 1603 . . . 4  |-  ( E. f A. a  e.  x  ( f `  a )  e.  a  <->  E. f A. z  e.  x  ( f `  z )  e.  z )
1610, 15sylib 122 . . 3  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z )
1716ex 115 . 2  |-  (CCHOICE  ->  (
( x  ~~  om  /\ 
A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
1817alrimiv 1872 1  |-  (CCHOICE  ->  A. x
( ( x  ~~  om 
/\  A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351   E.wex 1490    e. wcel 2146   A.wral 2453   class class class wbr 3998   omcom 4583    Fn wfn 5203   ` cfv 5208    ~~ cen 6728  CCHOICEwacc 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-en 6731  df-cc 7237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator