ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc1 Unicode version

Theorem cc1 7264
Description: Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Assertion
Ref Expression
cc1  |-  (CCHOICE  ->  A. x
( ( x  ~~  om 
/\  A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
Distinct variable groups:    w, f, z   
x, f, z

Proof of Theorem cc1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  -> CCHOICE )
2 simprl 529 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  x  ~~  om )
3 simprr 531 . . . . . . 7  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  A. z  e.  x  E. w  w  e.  z )
4 elequ2 2153 . . . . . . . . 9  |-  ( z  =  a  ->  (
w  e.  z  <->  w  e.  a ) )
54exbidv 1825 . . . . . . . 8  |-  ( z  =  a  ->  ( E. w  w  e.  z 
<->  E. w  w  e.  a ) )
65cbvralvw 2708 . . . . . . 7  |-  ( A. z  e.  x  E. w  w  e.  z  <->  A. a  e.  x  E. w  w  e.  a
)
73, 6sylib 122 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  A. a  e.  x  E. w  w  e.  a )
81, 2, 7ccfunen 7263 . . . . 5  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f
( f  Fn  x  /\  A. a  e.  x  ( f `  a
)  e.  a ) )
9 exsimpr 1618 . . . . 5  |-  ( E. f ( f  Fn  x  /\  A. a  e.  x  ( f `  a )  e.  a )  ->  E. f A. a  e.  x  ( f `  a
)  e.  a )
108, 9syl 14 . . . 4  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f A. a  e.  x  ( f `  a
)  e.  a )
11 fveq2 5516 . . . . . . 7  |-  ( a  =  z  ->  (
f `  a )  =  ( f `  z ) )
12 id 19 . . . . . . 7  |-  ( a  =  z  ->  a  =  z )
1311, 12eleq12d 2248 . . . . . 6  |-  ( a  =  z  ->  (
( f `  a
)  e.  a  <->  ( f `  z )  e.  z ) )
1413cbvralvw 2708 . . . . 5  |-  ( A. a  e.  x  (
f `  a )  e.  a  <->  A. z  e.  x  ( f `  z
)  e.  z )
1514exbii 1605 . . . 4  |-  ( E. f A. a  e.  x  ( f `  a )  e.  a  <->  E. f A. z  e.  x  ( f `  z )  e.  z )
1610, 15sylib 122 . . 3  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z )
1716ex 115 . 2  |-  (CCHOICE  ->  (
( x  ~~  om  /\ 
A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
1817alrimiv 1874 1  |-  (CCHOICE  ->  A. x
( ( x  ~~  om 
/\  A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351   E.wex 1492    e. wcel 2148   A.wral 2455   class class class wbr 4004   omcom 4590    Fn wfn 5212   ` cfv 5217    ~~ cen 6738  CCHOICEwacc 7261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-en 6741  df-cc 7262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator