ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc1 Unicode version

Theorem cc1 7206
Description: Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Assertion
Ref Expression
cc1  |-  (CCHOICE  ->  A. x
( ( x  ~~  om 
/\  A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
Distinct variable groups:    w, f, z   
x, f, z

Proof of Theorem cc1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  -> CCHOICE )
2 simprl 521 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  x  ~~  om )
3 simprr 522 . . . . . . 7  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  A. z  e.  x  E. w  w  e.  z )
4 elequ2 2141 . . . . . . . . 9  |-  ( z  =  a  ->  (
w  e.  z  <->  w  e.  a ) )
54exbidv 1813 . . . . . . . 8  |-  ( z  =  a  ->  ( E. w  w  e.  z 
<->  E. w  w  e.  a ) )
65cbvralvw 2696 . . . . . . 7  |-  ( A. z  e.  x  E. w  w  e.  z  <->  A. a  e.  x  E. w  w  e.  a
)
73, 6sylib 121 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  A. a  e.  x  E. w  w  e.  a )
81, 2, 7ccfunen 7205 . . . . 5  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f
( f  Fn  x  /\  A. a  e.  x  ( f `  a
)  e.  a ) )
9 exsimpr 1606 . . . . 5  |-  ( E. f ( f  Fn  x  /\  A. a  e.  x  ( f `  a )  e.  a )  ->  E. f A. a  e.  x  ( f `  a
)  e.  a )
108, 9syl 14 . . . 4  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f A. a  e.  x  ( f `  a
)  e.  a )
11 fveq2 5486 . . . . . . 7  |-  ( a  =  z  ->  (
f `  a )  =  ( f `  z ) )
12 id 19 . . . . . . 7  |-  ( a  =  z  ->  a  =  z )
1311, 12eleq12d 2237 . . . . . 6  |-  ( a  =  z  ->  (
( f `  a
)  e.  a  <->  ( f `  z )  e.  z ) )
1413cbvralvw 2696 . . . . 5  |-  ( A. a  e.  x  (
f `  a )  e.  a  <->  A. z  e.  x  ( f `  z
)  e.  z )
1514exbii 1593 . . . 4  |-  ( E. f A. a  e.  x  ( f `  a )  e.  a  <->  E. f A. z  e.  x  ( f `  z )  e.  z )
1610, 15sylib 121 . . 3  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z )
1716ex 114 . 2  |-  (CCHOICE  ->  (
( x  ~~  om  /\ 
A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
1817alrimiv 1862 1  |-  (CCHOICE  ->  A. x
( ( x  ~~  om 
/\  A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480    e. wcel 2136   A.wral 2444   class class class wbr 3982   omcom 4567    Fn wfn 5183   ` cfv 5188    ~~ cen 6704  CCHOICEwacc 7203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-en 6707  df-cc 7204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator