ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cc1 Unicode version

Theorem cc1 7227
Description: Countable choice in terms of a choice function on a countably infinite set of inhabited sets. (Contributed by Jim Kingdon, 27-Apr-2024.)
Assertion
Ref Expression
cc1  |-  (CCHOICE  ->  A. x
( ( x  ~~  om 
/\  A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
Distinct variable groups:    w, f, z   
x, f, z

Proof of Theorem cc1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  -> CCHOICE )
2 simprl 526 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  x  ~~  om )
3 simprr 527 . . . . . . 7  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  A. z  e.  x  E. w  w  e.  z )
4 elequ2 2146 . . . . . . . . 9  |-  ( z  =  a  ->  (
w  e.  z  <->  w  e.  a ) )
54exbidv 1818 . . . . . . . 8  |-  ( z  =  a  ->  ( E. w  w  e.  z 
<->  E. w  w  e.  a ) )
65cbvralvw 2700 . . . . . . 7  |-  ( A. z  e.  x  E. w  w  e.  z  <->  A. a  e.  x  E. w  w  e.  a
)
73, 6sylib 121 . . . . . 6  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  A. a  e.  x  E. w  w  e.  a )
81, 2, 7ccfunen 7226 . . . . 5  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f
( f  Fn  x  /\  A. a  e.  x  ( f `  a
)  e.  a ) )
9 exsimpr 1611 . . . . 5  |-  ( E. f ( f  Fn  x  /\  A. a  e.  x  ( f `  a )  e.  a )  ->  E. f A. a  e.  x  ( f `  a
)  e.  a )
108, 9syl 14 . . . 4  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f A. a  e.  x  ( f `  a
)  e.  a )
11 fveq2 5496 . . . . . . 7  |-  ( a  =  z  ->  (
f `  a )  =  ( f `  z ) )
12 id 19 . . . . . . 7  |-  ( a  =  z  ->  a  =  z )
1311, 12eleq12d 2241 . . . . . 6  |-  ( a  =  z  ->  (
( f `  a
)  e.  a  <->  ( f `  z )  e.  z ) )
1413cbvralvw 2700 . . . . 5  |-  ( A. a  e.  x  (
f `  a )  e.  a  <->  A. z  e.  x  ( f `  z
)  e.  z )
1514exbii 1598 . . . 4  |-  ( E. f A. a  e.  x  ( f `  a )  e.  a  <->  E. f A. z  e.  x  ( f `  z )  e.  z )
1610, 15sylib 121 . . 3  |-  ( (CCHOICE  /\  ( x  ~~  om  /\  A. z  e.  x  E. w  w  e.  z
) )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z )
1716ex 114 . 2  |-  (CCHOICE  ->  (
( x  ~~  om  /\ 
A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
1817alrimiv 1867 1  |-  (CCHOICE  ->  A. x
( ( x  ~~  om 
/\  A. z  e.  x  E. w  w  e.  z )  ->  E. f A. z  e.  x  ( f `  z
)  e.  z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346   E.wex 1485    e. wcel 2141   A.wral 2448   class class class wbr 3989   omcom 4574    Fn wfn 5193   ` cfv 5198    ~~ cen 6716  CCHOICEwacc 7224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-en 6719  df-cc 7225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator