ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnmz Unicode version

Theorem elnmz 13278
Description: Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypothesis
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
Assertion
Ref Expression
elnmz  |-  ( A  e.  N  <->  ( A  e.  X  /\  A. z  e.  X  ( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S
) ) )
Distinct variable groups:    x, z, A   
x, y, z    z, N    x, S, y, z   
x,  .+ , y, z    x, X, y, z
Allowed substitution hints:    A( y)    N( x, y)

Proof of Theorem elnmz
StepHypRef Expression
1 oveq2 5926 . . . . . 6  |-  ( y  =  z  ->  (
x  .+  y )  =  ( x  .+  z ) )
21eleq1d 2262 . . . . 5  |-  ( y  =  z  ->  (
( x  .+  y
)  e.  S  <->  ( x  .+  z )  e.  S
) )
3 oveq1 5925 . . . . . 6  |-  ( y  =  z  ->  (
y  .+  x )  =  ( z  .+  x ) )
43eleq1d 2262 . . . . 5  |-  ( y  =  z  ->  (
( y  .+  x
)  e.  S  <->  ( z  .+  x )  e.  S
) )
52, 4bibi12d 235 . . . 4  |-  ( y  =  z  ->  (
( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S )  <->  ( (
x  .+  z )  e.  S  <->  ( z  .+  x )  e.  S
) ) )
65cbvralvw 2730 . . 3  |-  ( A. y  e.  X  (
( x  .+  y
)  e.  S  <->  ( y  .+  x )  e.  S
)  <->  A. z  e.  X  ( ( x  .+  z )  e.  S  <->  ( z  .+  x )  e.  S ) )
7 oveq1 5925 . . . . . 6  |-  ( x  =  A  ->  (
x  .+  z )  =  ( A  .+  z ) )
87eleq1d 2262 . . . . 5  |-  ( x  =  A  ->  (
( x  .+  z
)  e.  S  <->  ( A  .+  z )  e.  S
) )
9 oveq2 5926 . . . . . 6  |-  ( x  =  A  ->  (
z  .+  x )  =  ( z  .+  A ) )
109eleq1d 2262 . . . . 5  |-  ( x  =  A  ->  (
( z  .+  x
)  e.  S  <->  ( z  .+  A )  e.  S
) )
118, 10bibi12d 235 . . . 4  |-  ( x  =  A  ->  (
( ( x  .+  z )  e.  S  <->  ( z  .+  x )  e.  S )  <->  ( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S
) ) )
1211ralbidv 2494 . . 3  |-  ( x  =  A  ->  ( A. z  e.  X  ( ( x  .+  z )  e.  S  <->  ( z  .+  x )  e.  S )  <->  A. z  e.  X  ( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S
) ) )
136, 12bitrid 192 . 2  |-  ( x  =  A  ->  ( A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S )  <->  A. z  e.  X  ( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S
) ) )
14 elnmz.1 . 2  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
1513, 14elrab2 2919 1  |-  ( A  e.  N  <->  ( A  e.  X  /\  A. z  e.  X  ( ( A  .+  z )  e.  S  <->  ( z  .+  A )  e.  S
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476  (class class class)co 5918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by:  nmzbi  13279  nmzsubg  13280  ssnmz  13281  conjnmzb  13350
  Copyright terms: Public domain W3C validator