| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp4 | Unicode version | ||
| Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp5 5217. (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| elxp4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | elex 2811 |
. . . 4
| |
| 3 | elex 2811 |
. . . 4
| |
| 4 | 2, 3 | anim12i 338 |
. . 3
|
| 5 | opexg 4314 |
. . . . 5
| |
| 6 | 5 | adantl 277 |
. . . 4
|
| 7 | eleq1 2292 |
. . . . 5
| |
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | 6, 8 | mpbird 167 |
. . 3
|
| 10 | 4, 9 | sylan2 286 |
. 2
|
| 11 | elxp 4736 |
. . . 4
| |
| 12 | 11 | a1i 9 |
. . 3
|
| 13 | sneq 3677 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | rneqd 4953 |
. . . . . . . . . . . 12
|
| 15 | 14 | unieqd 3899 |
. . . . . . . . . . 11
|
| 16 | vex 2802 |
. . . . . . . . . . . 12
| |
| 17 | vex 2802 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | op2nda 5213 |
. . . . . . . . . . 11
|
| 19 | 15, 18 | eqtr2di 2279 |
. . . . . . . . . 10
|
| 20 | 19 | pm4.71ri 392 |
. . . . . . . . 9
|
| 21 | 20 | anbi1i 458 |
. . . . . . . 8
|
| 22 | anass 401 |
. . . . . . . 8
| |
| 23 | 21, 22 | bitri 184 |
. . . . . . 7
|
| 24 | 23 | exbii 1651 |
. . . . . 6
|
| 25 | snexg 4268 |
. . . . . . . . 9
| |
| 26 | rnexg 4989 |
. . . . . . . . 9
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
|
| 28 | uniexg 4530 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
|
| 30 | opeq2 3858 |
. . . . . . . . . 10
| |
| 31 | 30 | eqeq2d 2241 |
. . . . . . . . 9
|
| 32 | eleq1 2292 |
. . . . . . . . . 10
| |
| 33 | 32 | anbi2d 464 |
. . . . . . . . 9
|
| 34 | 31, 33 | anbi12d 473 |
. . . . . . . 8
|
| 35 | 34 | ceqsexgv 2932 |
. . . . . . 7
|
| 36 | 29, 35 | syl 14 |
. . . . . 6
|
| 37 | 24, 36 | bitrid 192 |
. . . . 5
|
| 38 | sneq 3677 |
. . . . . . . . . . . 12
| |
| 39 | 38 | dmeqd 4925 |
. . . . . . . . . . 11
|
| 40 | 39 | unieqd 3899 |
. . . . . . . . . 10
|
| 41 | 40 | adantl 277 |
. . . . . . . . 9
|
| 42 | dmsnopg 5200 |
. . . . . . . . . . . . 13
| |
| 43 | 29, 42 | syl 14 |
. . . . . . . . . . . 12
|
| 44 | 43 | unieqd 3899 |
. . . . . . . . . . 11
|
| 45 | 16 | unisn 3904 |
. . . . . . . . . . 11
|
| 46 | 44, 45 | eqtrdi 2278 |
. . . . . . . . . 10
|
| 47 | 46 | adantr 276 |
. . . . . . . . 9
|
| 48 | 41, 47 | eqtr2d 2263 |
. . . . . . . 8
|
| 49 | 48 | ex 115 |
. . . . . . 7
|
| 50 | 49 | pm4.71rd 394 |
. . . . . 6
|
| 51 | 50 | anbi1d 465 |
. . . . 5
|
| 52 | anass 401 |
. . . . . 6
| |
| 53 | 52 | a1i 9 |
. . . . 5
|
| 54 | 37, 51, 53 | 3bitrd 214 |
. . . 4
|
| 55 | 54 | exbidv 1871 |
. . 3
|
| 56 | dmexg 4988 |
. . . . . 6
| |
| 57 | 25, 56 | syl 14 |
. . . . 5
|
| 58 | uniexg 4530 |
. . . . 5
| |
| 59 | 57, 58 | syl 14 |
. . . 4
|
| 60 | opeq1 3857 |
. . . . . . 7
| |
| 61 | 60 | eqeq2d 2241 |
. . . . . 6
|
| 62 | eleq1 2292 |
. . . . . . 7
| |
| 63 | 62 | anbi1d 465 |
. . . . . 6
|
| 64 | 61, 63 | anbi12d 473 |
. . . . 5
|
| 65 | 64 | ceqsexgv 2932 |
. . . 4
|
| 66 | 59, 65 | syl 14 |
. . 3
|
| 67 | 12, 55, 66 | 3bitrd 214 |
. 2
|
| 68 | 1, 10, 67 | pm5.21nii 709 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-dm 4729 df-rn 4730 |
| This theorem is referenced by: elxp6 6315 xpdom2 6990 |
| Copyright terms: Public domain | W3C validator |