Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elxp4 | Unicode version |
Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp5 5092. (Contributed by NM, 17-Feb-2004.) |
Ref | Expression |
---|---|
elxp4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 | |
2 | elex 2737 | . . . 4 | |
3 | elex 2737 | . . . 4 | |
4 | 2, 3 | anim12i 336 | . . 3 |
5 | opexg 4206 | . . . . 5 | |
6 | 5 | adantl 275 | . . . 4 |
7 | eleq1 2229 | . . . . 5 | |
8 | 7 | adantr 274 | . . . 4 |
9 | 6, 8 | mpbird 166 | . . 3 |
10 | 4, 9 | sylan2 284 | . 2 |
11 | elxp 4621 | . . . 4 | |
12 | 11 | a1i 9 | . . 3 |
13 | sneq 3587 | . . . . . . . . . . . . 13 | |
14 | 13 | rneqd 4833 | . . . . . . . . . . . 12 |
15 | 14 | unieqd 3800 | . . . . . . . . . . 11 |
16 | vex 2729 | . . . . . . . . . . . 12 | |
17 | vex 2729 | . . . . . . . . . . . 12 | |
18 | 16, 17 | op2nda 5088 | . . . . . . . . . . 11 |
19 | 15, 18 | eqtr2di 2216 | . . . . . . . . . 10 |
20 | 19 | pm4.71ri 390 | . . . . . . . . 9 |
21 | 20 | anbi1i 454 | . . . . . . . 8 |
22 | anass 399 | . . . . . . . 8 | |
23 | 21, 22 | bitri 183 | . . . . . . 7 |
24 | 23 | exbii 1593 | . . . . . 6 |
25 | snexg 4163 | . . . . . . . . 9 | |
26 | rnexg 4869 | . . . . . . . . 9 | |
27 | 25, 26 | syl 14 | . . . . . . . 8 |
28 | uniexg 4417 | . . . . . . . 8 | |
29 | 27, 28 | syl 14 | . . . . . . 7 |
30 | opeq2 3759 | . . . . . . . . . 10 | |
31 | 30 | eqeq2d 2177 | . . . . . . . . 9 |
32 | eleq1 2229 | . . . . . . . . . 10 | |
33 | 32 | anbi2d 460 | . . . . . . . . 9 |
34 | 31, 33 | anbi12d 465 | . . . . . . . 8 |
35 | 34 | ceqsexgv 2855 | . . . . . . 7 |
36 | 29, 35 | syl 14 | . . . . . 6 |
37 | 24, 36 | syl5bb 191 | . . . . 5 |
38 | sneq 3587 | . . . . . . . . . . . 12 | |
39 | 38 | dmeqd 4806 | . . . . . . . . . . 11 |
40 | 39 | unieqd 3800 | . . . . . . . . . 10 |
41 | 40 | adantl 275 | . . . . . . . . 9 |
42 | dmsnopg 5075 | . . . . . . . . . . . . 13 | |
43 | 29, 42 | syl 14 | . . . . . . . . . . . 12 |
44 | 43 | unieqd 3800 | . . . . . . . . . . 11 |
45 | 16 | unisn 3805 | . . . . . . . . . . 11 |
46 | 44, 45 | eqtrdi 2215 | . . . . . . . . . 10 |
47 | 46 | adantr 274 | . . . . . . . . 9 |
48 | 41, 47 | eqtr2d 2199 | . . . . . . . 8 |
49 | 48 | ex 114 | . . . . . . 7 |
50 | 49 | pm4.71rd 392 | . . . . . 6 |
51 | 50 | anbi1d 461 | . . . . 5 |
52 | anass 399 | . . . . . 6 | |
53 | 52 | a1i 9 | . . . . 5 |
54 | 37, 51, 53 | 3bitrd 213 | . . . 4 |
55 | 54 | exbidv 1813 | . . 3 |
56 | dmexg 4868 | . . . . . 6 | |
57 | 25, 56 | syl 14 | . . . . 5 |
58 | uniexg 4417 | . . . . 5 | |
59 | 57, 58 | syl 14 | . . . 4 |
60 | opeq1 3758 | . . . . . . 7 | |
61 | 60 | eqeq2d 2177 | . . . . . 6 |
62 | eleq1 2229 | . . . . . . 7 | |
63 | 62 | anbi1d 461 | . . . . . 6 |
64 | 61, 63 | anbi12d 465 | . . . . 5 |
65 | 64 | ceqsexgv 2855 | . . . 4 |
66 | 59, 65 | syl 14 | . . 3 |
67 | 12, 55, 66 | 3bitrd 213 | . 2 |
68 | 1, 10, 67 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cvv 2726 csn 3576 cop 3579 cuni 3789 cxp 4602 cdm 4604 crn 4605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 |
This theorem is referenced by: elxp6 6137 xpdom2 6797 |
Copyright terms: Public domain | W3C validator |