| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp4 | Unicode version | ||
| Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp5 5171. (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| elxp4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | elex 2783 |
. . . 4
| |
| 3 | elex 2783 |
. . . 4
| |
| 4 | 2, 3 | anim12i 338 |
. . 3
|
| 5 | opexg 4272 |
. . . . 5
| |
| 6 | 5 | adantl 277 |
. . . 4
|
| 7 | eleq1 2268 |
. . . . 5
| |
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | 6, 8 | mpbird 167 |
. . 3
|
| 10 | 4, 9 | sylan2 286 |
. 2
|
| 11 | elxp 4692 |
. . . 4
| |
| 12 | 11 | a1i 9 |
. . 3
|
| 13 | sneq 3644 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | rneqd 4907 |
. . . . . . . . . . . 12
|
| 15 | 14 | unieqd 3861 |
. . . . . . . . . . 11
|
| 16 | vex 2775 |
. . . . . . . . . . . 12
| |
| 17 | vex 2775 |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | op2nda 5167 |
. . . . . . . . . . 11
|
| 19 | 15, 18 | eqtr2di 2255 |
. . . . . . . . . 10
|
| 20 | 19 | pm4.71ri 392 |
. . . . . . . . 9
|
| 21 | 20 | anbi1i 458 |
. . . . . . . 8
|
| 22 | anass 401 |
. . . . . . . 8
| |
| 23 | 21, 22 | bitri 184 |
. . . . . . 7
|
| 24 | 23 | exbii 1628 |
. . . . . 6
|
| 25 | snexg 4228 |
. . . . . . . . 9
| |
| 26 | rnexg 4943 |
. . . . . . . . 9
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
|
| 28 | uniexg 4486 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
|
| 30 | opeq2 3820 |
. . . . . . . . . 10
| |
| 31 | 30 | eqeq2d 2217 |
. . . . . . . . 9
|
| 32 | eleq1 2268 |
. . . . . . . . . 10
| |
| 33 | 32 | anbi2d 464 |
. . . . . . . . 9
|
| 34 | 31, 33 | anbi12d 473 |
. . . . . . . 8
|
| 35 | 34 | ceqsexgv 2902 |
. . . . . . 7
|
| 36 | 29, 35 | syl 14 |
. . . . . 6
|
| 37 | 24, 36 | bitrid 192 |
. . . . 5
|
| 38 | sneq 3644 |
. . . . . . . . . . . 12
| |
| 39 | 38 | dmeqd 4880 |
. . . . . . . . . . 11
|
| 40 | 39 | unieqd 3861 |
. . . . . . . . . 10
|
| 41 | 40 | adantl 277 |
. . . . . . . . 9
|
| 42 | dmsnopg 5154 |
. . . . . . . . . . . . 13
| |
| 43 | 29, 42 | syl 14 |
. . . . . . . . . . . 12
|
| 44 | 43 | unieqd 3861 |
. . . . . . . . . . 11
|
| 45 | 16 | unisn 3866 |
. . . . . . . . . . 11
|
| 46 | 44, 45 | eqtrdi 2254 |
. . . . . . . . . 10
|
| 47 | 46 | adantr 276 |
. . . . . . . . 9
|
| 48 | 41, 47 | eqtr2d 2239 |
. . . . . . . 8
|
| 49 | 48 | ex 115 |
. . . . . . 7
|
| 50 | 49 | pm4.71rd 394 |
. . . . . 6
|
| 51 | 50 | anbi1d 465 |
. . . . 5
|
| 52 | anass 401 |
. . . . . 6
| |
| 53 | 52 | a1i 9 |
. . . . 5
|
| 54 | 37, 51, 53 | 3bitrd 214 |
. . . 4
|
| 55 | 54 | exbidv 1848 |
. . 3
|
| 56 | dmexg 4942 |
. . . . . 6
| |
| 57 | 25, 56 | syl 14 |
. . . . 5
|
| 58 | uniexg 4486 |
. . . . 5
| |
| 59 | 57, 58 | syl 14 |
. . . 4
|
| 60 | opeq1 3819 |
. . . . . . 7
| |
| 61 | 60 | eqeq2d 2217 |
. . . . . 6
|
| 62 | eleq1 2268 |
. . . . . . 7
| |
| 63 | 62 | anbi1d 465 |
. . . . . 6
|
| 64 | 61, 63 | anbi12d 473 |
. . . . 5
|
| 65 | 64 | ceqsexgv 2902 |
. . . 4
|
| 66 | 59, 65 | syl 14 |
. . 3
|
| 67 | 12, 55, 66 | 3bitrd 214 |
. 2
|
| 68 | 1, 10, 67 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 df-dm 4685 df-rn 4686 |
| This theorem is referenced by: elxp6 6255 xpdom2 6926 |
| Copyright terms: Public domain | W3C validator |