| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elxp4 | Unicode version | ||
| Description: Membership in a cross product. This version requires no quantifiers or dummy variables. See also elxp5 5158. (Contributed by NM, 17-Feb-2004.) | 
| Ref | Expression | 
|---|---|
| elxp4 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | 
. 2
 | |
| 2 | elex 2774 | 
. . . 4
 | |
| 3 | elex 2774 | 
. . . 4
 | |
| 4 | 2, 3 | anim12i 338 | 
. . 3
 | 
| 5 | opexg 4261 | 
. . . . 5
 | |
| 6 | 5 | adantl 277 | 
. . . 4
 | 
| 7 | eleq1 2259 | 
. . . . 5
 | |
| 8 | 7 | adantr 276 | 
. . . 4
 | 
| 9 | 6, 8 | mpbird 167 | 
. . 3
 | 
| 10 | 4, 9 | sylan2 286 | 
. 2
 | 
| 11 | elxp 4680 | 
. . . 4
 | |
| 12 | 11 | a1i 9 | 
. . 3
 | 
| 13 | sneq 3633 | 
. . . . . . . . . . . . 13
 | |
| 14 | 13 | rneqd 4895 | 
. . . . . . . . . . . 12
 | 
| 15 | 14 | unieqd 3850 | 
. . . . . . . . . . 11
 | 
| 16 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 17 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 18 | 16, 17 | op2nda 5154 | 
. . . . . . . . . . 11
 | 
| 19 | 15, 18 | eqtr2di 2246 | 
. . . . . . . . . 10
 | 
| 20 | 19 | pm4.71ri 392 | 
. . . . . . . . 9
 | 
| 21 | 20 | anbi1i 458 | 
. . . . . . . 8
 | 
| 22 | anass 401 | 
. . . . . . . 8
 | |
| 23 | 21, 22 | bitri 184 | 
. . . . . . 7
 | 
| 24 | 23 | exbii 1619 | 
. . . . . 6
 | 
| 25 | snexg 4217 | 
. . . . . . . . 9
 | |
| 26 | rnexg 4931 | 
. . . . . . . . 9
 | |
| 27 | 25, 26 | syl 14 | 
. . . . . . . 8
 | 
| 28 | uniexg 4474 | 
. . . . . . . 8
 | |
| 29 | 27, 28 | syl 14 | 
. . . . . . 7
 | 
| 30 | opeq2 3809 | 
. . . . . . . . . 10
 | |
| 31 | 30 | eqeq2d 2208 | 
. . . . . . . . 9
 | 
| 32 | eleq1 2259 | 
. . . . . . . . . 10
 | |
| 33 | 32 | anbi2d 464 | 
. . . . . . . . 9
 | 
| 34 | 31, 33 | anbi12d 473 | 
. . . . . . . 8
 | 
| 35 | 34 | ceqsexgv 2893 | 
. . . . . . 7
 | 
| 36 | 29, 35 | syl 14 | 
. . . . . 6
 | 
| 37 | 24, 36 | bitrid 192 | 
. . . . 5
 | 
| 38 | sneq 3633 | 
. . . . . . . . . . . 12
 | |
| 39 | 38 | dmeqd 4868 | 
. . . . . . . . . . 11
 | 
| 40 | 39 | unieqd 3850 | 
. . . . . . . . . 10
 | 
| 41 | 40 | adantl 277 | 
. . . . . . . . 9
 | 
| 42 | dmsnopg 5141 | 
. . . . . . . . . . . . 13
 | |
| 43 | 29, 42 | syl 14 | 
. . . . . . . . . . . 12
 | 
| 44 | 43 | unieqd 3850 | 
. . . . . . . . . . 11
 | 
| 45 | 16 | unisn 3855 | 
. . . . . . . . . . 11
 | 
| 46 | 44, 45 | eqtrdi 2245 | 
. . . . . . . . . 10
 | 
| 47 | 46 | adantr 276 | 
. . . . . . . . 9
 | 
| 48 | 41, 47 | eqtr2d 2230 | 
. . . . . . . 8
 | 
| 49 | 48 | ex 115 | 
. . . . . . 7
 | 
| 50 | 49 | pm4.71rd 394 | 
. . . . . 6
 | 
| 51 | 50 | anbi1d 465 | 
. . . . 5
 | 
| 52 | anass 401 | 
. . . . . 6
 | |
| 53 | 52 | a1i 9 | 
. . . . 5
 | 
| 54 | 37, 51, 53 | 3bitrd 214 | 
. . . 4
 | 
| 55 | 54 | exbidv 1839 | 
. . 3
 | 
| 56 | dmexg 4930 | 
. . . . . 6
 | |
| 57 | 25, 56 | syl 14 | 
. . . . 5
 | 
| 58 | uniexg 4474 | 
. . . . 5
 | |
| 59 | 57, 58 | syl 14 | 
. . . 4
 | 
| 60 | opeq1 3808 | 
. . . . . . 7
 | |
| 61 | 60 | eqeq2d 2208 | 
. . . . . 6
 | 
| 62 | eleq1 2259 | 
. . . . . . 7
 | |
| 63 | 62 | anbi1d 465 | 
. . . . . 6
 | 
| 64 | 61, 63 | anbi12d 473 | 
. . . . 5
 | 
| 65 | 64 | ceqsexgv 2893 | 
. . . 4
 | 
| 66 | 59, 65 | syl 14 | 
. . 3
 | 
| 67 | 12, 55, 66 | 3bitrd 214 | 
. 2
 | 
| 68 | 1, 10, 67 | pm5.21nii 705 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 | 
| This theorem is referenced by: elxp6 6227 xpdom2 6890 | 
| Copyright terms: Public domain | W3C validator |