ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvimarndm Unicode version

Theorem cnvimarndm 5092
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm  |-  ( `' A " ran  A
)  =  dom  A

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 5078 . 2  |-  ( `' A " dom  `' A )  =  ran  `' A
2 df-rn 4730 . . 3  |-  ran  A  =  dom  `' A
32imaeq2i 5066 . 2  |-  ( `' A " ran  A
)  =  ( `' A " dom  `' A )
4 dfdm4 4915 . 2  |-  dom  A  =  ran  `' A
51, 3, 43eqtr4i 2260 1  |-  ( `' A " ran  A
)  =  dom  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395   `'ccnv 4718   dom cdm 4719   ran crn 4720   "cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  en2  6973  cnrest2  14910
  Copyright terms: Public domain W3C validator