ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvimarndm GIF version

Theorem cnvimarndm 4783
Description: The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
Assertion
Ref Expression
cnvimarndm (𝐴 “ ran 𝐴) = dom 𝐴

Proof of Theorem cnvimarndm
StepHypRef Expression
1 imadmrn 4771 . 2 (𝐴 “ dom 𝐴) = ran 𝐴
2 df-rn 4439 . . 3 ran 𝐴 = dom 𝐴
32imaeq2i 4759 . 2 (𝐴 “ ran 𝐴) = (𝐴 “ dom 𝐴)
4 dfdm4 4616 . 2 dom 𝐴 = ran 𝐴
51, 3, 43eqtr4i 2118 1 (𝐴 “ ran 𝐴) = dom 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1289  ccnv 4427  dom cdm 4428  ran crn 4429  cima 4431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-xp 4434  df-cnv 4436  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator