ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvimass Unicode version

Theorem cnvimass 5091
Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.)
Assertion
Ref Expression
cnvimass  |-  ( `' A " B ) 
C_  dom  A

Proof of Theorem cnvimass
StepHypRef Expression
1 imassrn 5079 . 2  |-  ( `' A " B ) 
C_  ran  `' A
2 dfdm4 4915 . 2  |-  dom  A  =  ran  `' A
31, 2sseqtrri 3259 1  |-  ( `' A " B ) 
C_  dom  A
Colors of variables: wff set class
Syntax hints:    C_ wss 3197   `'ccnv 4718   dom cdm 4719   ran crn 4720   "cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  fvimacnvi  5749  elpreima  5754  fconst4m  5859  pw2f1odclem  6995  nn0supp  9421  fisumss  11903  fprodssdc  12101  1arith  12890  ghmpreima  13803  psrbagfi  14637  cnpnei  14893  cnclima  14897  cnntri  14898  cnntr  14899  cncnp  14904  cnrest2  14910  cndis  14915  txcnmpt  14947  txdis1cn  14952  hmeoimaf1o  14988  xmeter  15110
  Copyright terms: Public domain W3C validator