| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvimass | Unicode version | ||
| Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
| Ref | Expression |
|---|---|
| cnvimass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 5034 |
. 2
| |
| 2 | dfdm4 4871 |
. 2
| |
| 3 | 1, 2 | sseqtrri 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 |
| This theorem is referenced by: fvimacnvi 5696 elpreima 5701 fconst4m 5806 pw2f1odclem 6933 nn0supp 9349 fisumss 11736 fprodssdc 11934 1arith 12723 ghmpreima 13635 psrbagfi 14468 cnpnei 14724 cnclima 14728 cnntri 14729 cnntr 14730 cncnp 14735 cnrest2 14741 cndis 14746 txcnmpt 14778 txdis1cn 14783 hmeoimaf1o 14819 xmeter 14941 |
| Copyright terms: Public domain | W3C validator |