Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvimass | Unicode version |
Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
Ref | Expression |
---|---|
cnvimass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 4964 | . 2 | |
2 | dfdm4 4803 | . 2 | |
3 | 1, 2 | sseqtrri 3182 | 1 |
Colors of variables: wff set class |
Syntax hints: wss 3121 ccnv 4610 cdm 4611 crn 4612 cima 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 |
This theorem is referenced by: fvimacnvi 5610 elpreima 5615 fconst4m 5716 nn0supp 9187 fisumss 11355 fprodssdc 11553 1arith 12319 cnpnei 13013 cnclima 13017 cnntri 13018 cnntr 13019 cncnp 13024 cnrest2 13030 cndis 13035 txcnmpt 13067 txdis1cn 13072 hmeoimaf1o 13108 xmeter 13230 |
Copyright terms: Public domain | W3C validator |