| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvimass | Unicode version | ||
| Description: A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.) |
| Ref | Expression |
|---|---|
| cnvimass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 5052 |
. 2
| |
| 2 | dfdm4 4889 |
. 2
| |
| 3 | 1, 2 | sseqtrri 3236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 |
| This theorem is referenced by: fvimacnvi 5717 elpreima 5722 fconst4m 5827 pw2f1odclem 6956 nn0supp 9382 fisumss 11818 fprodssdc 12016 1arith 12805 ghmpreima 13717 psrbagfi 14550 cnpnei 14806 cnclima 14810 cnntri 14811 cnntr 14812 cncnp 14817 cnrest2 14823 cndis 14828 txcnmpt 14860 txdis1cn 14865 hmeoimaf1o 14901 xmeter 15023 |
| Copyright terms: Public domain | W3C validator |