ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnun Unicode version

Theorem rnun 5099
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun  |-  ran  ( A  u.  B )  =  ( ran  A  u.  ran  B )

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 5096 . . . 4  |-  `' ( A  u.  B )  =  ( `' A  u.  `' B )
21dmeqi 4887 . . 3  |-  dom  `' ( A  u.  B
)  =  dom  ( `' A  u.  `' B )
3 dmun 4893 . . 3  |-  dom  ( `' A  u.  `' B )  =  ( dom  `' A  u.  dom  `' B )
42, 3eqtri 2227 . 2  |-  dom  `' ( A  u.  B
)  =  ( dom  `' A  u.  dom  `' B )
5 df-rn 4693 . 2  |-  ran  ( A  u.  B )  =  dom  `' ( A  u.  B )
6 df-rn 4693 . . 3  |-  ran  A  =  dom  `' A
7 df-rn 4693 . . 3  |-  ran  B  =  dom  `' B
86, 7uneq12i 3329 . 2  |-  ( ran 
A  u.  ran  B
)  =  ( dom  `' A  u.  dom  `' B )
94, 5, 83eqtr4i 2237 1  |-  ran  ( A  u.  B )  =  ( ran  A  u.  ran  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3168   `'ccnv 4681   dom cdm 4682   ran crn 4683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-cnv 4690  df-dm 4692  df-rn 4693
This theorem is referenced by:  imaundi  5103  imaundir  5104  rnpropg  5170  fun  5458  foun  5552  fpr  5778  fprg  5779  sbthlemi6  7078  exmidfodomrlemim  7324
  Copyright terms: Public domain W3C validator