ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnun Unicode version

Theorem rnun 5029
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun  |-  ran  ( A  u.  B )  =  ( ran  A  u.  ran  B )

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 5026 . . . 4  |-  `' ( A  u.  B )  =  ( `' A  u.  `' B )
21dmeqi 4821 . . 3  |-  dom  `' ( A  u.  B
)  =  dom  ( `' A  u.  `' B )
3 dmun 4827 . . 3  |-  dom  ( `' A  u.  `' B )  =  ( dom  `' A  u.  dom  `' B )
42, 3eqtri 2196 . 2  |-  dom  `' ( A  u.  B
)  =  ( dom  `' A  u.  dom  `' B )
5 df-rn 4631 . 2  |-  ran  ( A  u.  B )  =  dom  `' ( A  u.  B )
6 df-rn 4631 . . 3  |-  ran  A  =  dom  `' A
7 df-rn 4631 . . 3  |-  ran  B  =  dom  `' B
86, 7uneq12i 3285 . 2  |-  ( ran 
A  u.  ran  B
)  =  ( dom  `' A  u.  dom  `' B )
94, 5, 83eqtr4i 2206 1  |-  ran  ( A  u.  B )  =  ( ran  A  u.  ran  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    u. cun 3125   `'ccnv 4619   dom cdm 4620   ran crn 4621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-cnv 4628  df-dm 4630  df-rn 4631
This theorem is referenced by:  imaundi  5033  imaundir  5034  rnpropg  5100  fun  5380  foun  5472  fpr  5690  fprg  5691  sbthlemi6  6951  exmidfodomrlemim  7190
  Copyright terms: Public domain W3C validator