ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnun Unicode version

Theorem rnun 5074
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun  |-  ran  ( A  u.  B )  =  ( ran  A  u.  ran  B )

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 5071 . . . 4  |-  `' ( A  u.  B )  =  ( `' A  u.  `' B )
21dmeqi 4863 . . 3  |-  dom  `' ( A  u.  B
)  =  dom  ( `' A  u.  `' B )
3 dmun 4869 . . 3  |-  dom  ( `' A  u.  `' B )  =  ( dom  `' A  u.  dom  `' B )
42, 3eqtri 2214 . 2  |-  dom  `' ( A  u.  B
)  =  ( dom  `' A  u.  dom  `' B )
5 df-rn 4670 . 2  |-  ran  ( A  u.  B )  =  dom  `' ( A  u.  B )
6 df-rn 4670 . . 3  |-  ran  A  =  dom  `' A
7 df-rn 4670 . . 3  |-  ran  B  =  dom  `' B
86, 7uneq12i 3311 . 2  |-  ( ran 
A  u.  ran  B
)  =  ( dom  `' A  u.  dom  `' B )
94, 5, 83eqtr4i 2224 1  |-  ran  ( A  u.  B )  =  ( ran  A  u.  ran  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3151   `'ccnv 4658   dom cdm 4659   ran crn 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  imaundi  5078  imaundir  5079  rnpropg  5145  fun  5426  foun  5519  fpr  5740  fprg  5741  sbthlemi6  7021  exmidfodomrlemim  7261
  Copyright terms: Public domain W3C validator