ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnun Unicode version

Theorem rnun 5019
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun  |-  ran  ( A  u.  B )  =  ( ran  A  u.  ran  B )

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 5016 . . . 4  |-  `' ( A  u.  B )  =  ( `' A  u.  `' B )
21dmeqi 4812 . . 3  |-  dom  `' ( A  u.  B
)  =  dom  ( `' A  u.  `' B )
3 dmun 4818 . . 3  |-  dom  ( `' A  u.  `' B )  =  ( dom  `' A  u.  dom  `' B )
42, 3eqtri 2191 . 2  |-  dom  `' ( A  u.  B
)  =  ( dom  `' A  u.  dom  `' B )
5 df-rn 4622 . 2  |-  ran  ( A  u.  B )  =  dom  `' ( A  u.  B )
6 df-rn 4622 . . 3  |-  ran  A  =  dom  `' A
7 df-rn 4622 . . 3  |-  ran  B  =  dom  `' B
86, 7uneq12i 3279 . 2  |-  ( ran 
A  u.  ran  B
)  =  ( dom  `' A  u.  dom  `' B )
94, 5, 83eqtr4i 2201 1  |-  ran  ( A  u.  B )  =  ( ran  A  u.  ran  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1348    u. cun 3119   `'ccnv 4610   dom cdm 4611   ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  imaundi  5023  imaundir  5024  rnpropg  5090  fun  5370  foun  5461  fpr  5678  fprg  5679  sbthlemi6  6939  exmidfodomrlemim  7178
  Copyright terms: Public domain W3C validator