ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnun Unicode version

Theorem rnun 5078
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
rnun  |-  ran  ( A  u.  B )  =  ( ran  A  u.  ran  B )

Proof of Theorem rnun
StepHypRef Expression
1 cnvun 5075 . . . 4  |-  `' ( A  u.  B )  =  ( `' A  u.  `' B )
21dmeqi 4867 . . 3  |-  dom  `' ( A  u.  B
)  =  dom  ( `' A  u.  `' B )
3 dmun 4873 . . 3  |-  dom  ( `' A  u.  `' B )  =  ( dom  `' A  u.  dom  `' B )
42, 3eqtri 2217 . 2  |-  dom  `' ( A  u.  B
)  =  ( dom  `' A  u.  dom  `' B )
5 df-rn 4674 . 2  |-  ran  ( A  u.  B )  =  dom  `' ( A  u.  B )
6 df-rn 4674 . . 3  |-  ran  A  =  dom  `' A
7 df-rn 4674 . . 3  |-  ran  B  =  dom  `' B
86, 7uneq12i 3315 . 2  |-  ( ran 
A  u.  ran  B
)  =  ( dom  `' A  u.  dom  `' B )
94, 5, 83eqtr4i 2227 1  |-  ran  ( A  u.  B )  =  ( ran  A  u.  ran  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3155   `'ccnv 4662   dom cdm 4663   ran crn 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  imaundi  5082  imaundir  5083  rnpropg  5149  fun  5430  foun  5523  fpr  5744  fprg  5745  sbthlemi6  7028  exmidfodomrlemim  7268
  Copyright terms: Public domain W3C validator