ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oun Unicode version

Theorem f1oun 5527
Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
f1oun  |-  ( ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( F  u.  G ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )

Proof of Theorem f1oun
StepHypRef Expression
1 dff1o4 5515 . . . 4  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
2 dff1o4 5515 . . . 4  |-  ( G : C -1-1-onto-> D  <->  ( G  Fn  C  /\  `' G  Fn  D ) )
3 fnun 5367 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  C
)  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  C )
)
43ex 115 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  C )  ->  ( ( A  i^i  C )  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  C
) ) )
5 fnun 5367 . . . . . . . 8  |-  ( ( ( `' F  Fn  B  /\  `' G  Fn  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( `' F  u.  `' G
)  Fn  ( B  u.  D ) )
6 cnvun 5076 . . . . . . . . 9  |-  `' ( F  u.  G )  =  ( `' F  u.  `' G )
76fneq1i 5353 . . . . . . . 8  |-  ( `' ( F  u.  G
)  Fn  ( B  u.  D )  <->  ( `' F  u.  `' G
)  Fn  ( B  u.  D ) )
85, 7sylibr 134 . . . . . . 7  |-  ( ( ( `' F  Fn  B  /\  `' G  Fn  D )  /\  ( B  i^i  D )  =  (/) )  ->  `' ( F  u.  G )  Fn  ( B  u.  D ) )
98ex 115 . . . . . 6  |-  ( ( `' F  Fn  B  /\  `' G  Fn  D
)  ->  ( ( B  i^i  D )  =  (/)  ->  `' ( F  u.  G )  Fn  ( B  u.  D
) ) )
104, 9im2anan9 598 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  C
)  /\  ( `' F  Fn  B  /\  `' G  Fn  D
) )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( ( F  u.  G )  Fn  ( A  u.  C )  /\  `' ( F  u.  G
)  Fn  ( B  u.  D ) ) ) )
1110an4s 588 . . . 4  |-  ( ( ( F  Fn  A  /\  `' F  Fn  B
)  /\  ( G  Fn  C  /\  `' G  Fn  D ) )  -> 
( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  -> 
( ( F  u.  G )  Fn  ( A  u.  C )  /\  `' ( F  u.  G )  Fn  ( B  u.  D )
) ) )
121, 2, 11syl2anb 291 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( ( F  u.  G )  Fn  ( A  u.  C )  /\  `' ( F  u.  G
)  Fn  ( B  u.  D ) ) ) )
13 dff1o4 5515 . . 3  |-  ( ( F  u.  G ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D
)  <->  ( ( F  u.  G )  Fn  ( A  u.  C
)  /\  `' ( F  u.  G )  Fn  ( B  u.  D
) ) )
1412, 13imbitrrdi 162 . 2  |-  ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  C
)
-1-1-onto-> ( B  u.  D
) ) )
1514imp 124 1  |-  ( ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( F  u.  G ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    u. cun 3155    i^i cin 3156   (/)c0 3451   `'ccnv 4663    Fn wfn 5254   -1-1-onto->wf1o 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266
This theorem is referenced by:  f1oprg  5551  unen  6884  zfz1isolem1  10949  ennnfonelemhf1o  12655
  Copyright terms: Public domain W3C validator