ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oun Unicode version

Theorem f1oun 5435
Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
f1oun  |-  ( ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( F  u.  G ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )

Proof of Theorem f1oun
StepHypRef Expression
1 dff1o4 5423 . . . 4  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  `' F  Fn  B ) )
2 dff1o4 5423 . . . 4  |-  ( G : C -1-1-onto-> D  <->  ( G  Fn  C  /\  `' G  Fn  D ) )
3 fnun 5277 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  C
)  /\  ( A  i^i  C )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  C )
)
43ex 114 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  C )  ->  ( ( A  i^i  C )  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  C
) ) )
5 fnun 5277 . . . . . . . 8  |-  ( ( ( `' F  Fn  B  /\  `' G  Fn  D )  /\  ( B  i^i  D )  =  (/) )  ->  ( `' F  u.  `' G
)  Fn  ( B  u.  D ) )
6 cnvun 4992 . . . . . . . . 9  |-  `' ( F  u.  G )  =  ( `' F  u.  `' G )
76fneq1i 5265 . . . . . . . 8  |-  ( `' ( F  u.  G
)  Fn  ( B  u.  D )  <->  ( `' F  u.  `' G
)  Fn  ( B  u.  D ) )
85, 7sylibr 133 . . . . . . 7  |-  ( ( ( `' F  Fn  B  /\  `' G  Fn  D )  /\  ( B  i^i  D )  =  (/) )  ->  `' ( F  u.  G )  Fn  ( B  u.  D ) )
98ex 114 . . . . . 6  |-  ( ( `' F  Fn  B  /\  `' G  Fn  D
)  ->  ( ( B  i^i  D )  =  (/)  ->  `' ( F  u.  G )  Fn  ( B  u.  D
) ) )
104, 9im2anan9 588 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  C
)  /\  ( `' F  Fn  B  /\  `' G  Fn  D
) )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( ( F  u.  G )  Fn  ( A  u.  C )  /\  `' ( F  u.  G
)  Fn  ( B  u.  D ) ) ) )
1110an4s 578 . . . 4  |-  ( ( ( F  Fn  A  /\  `' F  Fn  B
)  /\  ( G  Fn  C  /\  `' G  Fn  D ) )  -> 
( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  -> 
( ( F  u.  G )  Fn  ( A  u.  C )  /\  `' ( F  u.  G )  Fn  ( B  u.  D )
) ) )
121, 2, 11syl2anb 289 . . 3  |-  ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( ( F  u.  G )  Fn  ( A  u.  C )  /\  `' ( F  u.  G
)  Fn  ( B  u.  D ) ) ) )
13 dff1o4 5423 . . 3  |-  ( ( F  u.  G ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D
)  <->  ( ( F  u.  G )  Fn  ( A  u.  C
)  /\  `' ( F  u.  G )  Fn  ( B  u.  D
) ) )
1412, 13syl6ibr 161 . 2  |-  ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  C
)
-1-1-onto-> ( B  u.  D
) ) )
1514imp 123 1  |-  ( ( ( F : A -1-1-onto-> B  /\  G : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( F  u.  G ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    u. cun 3100    i^i cin 3101   (/)c0 3394   `'ccnv 4586    Fn wfn 5166   -1-1-onto->wf1o 5170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3967  df-opab 4027  df-id 4254  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178
This theorem is referenced by:  f1oprg  5459  unen  6762  zfz1isolem1  10715  ennnfonelemhf1o  12184
  Copyright terms: Public domain W3C validator