ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvdif Unicode version

Theorem cnvdif 4948
Description: Distributive law for converse over set difference. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvdif  |-  `' ( A  \  B )  =  ( `' A  \  `' B )

Proof of Theorem cnvdif
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4920 . 2  |-  Rel  `' ( A  \  B )
2 difss 3202 . . 3  |-  ( `' A  \  `' B
)  C_  `' A
3 relcnv 4920 . . 3  |-  Rel  `' A
4 relss 4629 . . 3  |-  ( ( `' A  \  `' B
)  C_  `' A  ->  ( Rel  `' A  ->  Rel  ( `' A  \  `' B ) ) )
52, 3, 4mp2 16 . 2  |-  Rel  ( `' A  \  `' B
)
6 eldif 3080 . . 3  |-  ( <.
y ,  x >.  e.  ( A  \  B
)  <->  ( <. y ,  x >.  e.  A  /\  -.  <. y ,  x >.  e.  B ) )
7 vex 2689 . . . 4  |-  x  e. 
_V
8 vex 2689 . . . 4  |-  y  e. 
_V
97, 8opelcnv 4724 . . 3  |-  ( <.
x ,  y >.  e.  `' ( A  \  B )  <->  <. y ,  x >.  e.  ( A  \  B ) )
10 eldif 3080 . . . 4  |-  ( <.
x ,  y >.  e.  ( `' A  \  `' B )  <->  ( <. x ,  y >.  e.  `' A  /\  -.  <. x ,  y >.  e.  `' B ) )
117, 8opelcnv 4724 . . . . 5  |-  ( <.
x ,  y >.  e.  `' A  <->  <. y ,  x >.  e.  A )
127, 8opelcnv 4724 . . . . . 6  |-  ( <.
x ,  y >.  e.  `' B  <->  <. y ,  x >.  e.  B )
1312notbii 657 . . . . 5  |-  ( -. 
<. x ,  y >.  e.  `' B  <->  -.  <. y ,  x >.  e.  B
)
1411, 13anbi12i 455 . . . 4  |-  ( (
<. x ,  y >.  e.  `' A  /\  -.  <. x ,  y >.  e.  `' B )  <->  ( <. y ,  x >.  e.  A  /\  -.  <. y ,  x >.  e.  B ) )
1510, 14bitri 183 . . 3  |-  ( <.
x ,  y >.  e.  ( `' A  \  `' B )  <->  ( <. y ,  x >.  e.  A  /\  -.  <. y ,  x >.  e.  B ) )
166, 9, 153bitr4i 211 . 2  |-  ( <.
x ,  y >.  e.  `' ( A  \  B )  <->  <. x ,  y >.  e.  ( `' A  \  `' B
) )
171, 5, 16eqrelriiv 4636 1  |-  `' ( A  \  B )  =  ( `' A  \  `' B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    = wceq 1331    e. wcel 1480    \ cdif 3068    C_ wss 3071   <.cop 3530   `'ccnv 4541   Rel wrel 4547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3933  df-opab 3993  df-xp 4548  df-rel 4549  df-cnv 4550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator