ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvdif Unicode version

Theorem cnvdif 5076
Description: Distributive law for converse over set difference. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
cnvdif  |-  `' ( A  \  B )  =  ( `' A  \  `' B )

Proof of Theorem cnvdif
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5047 . 2  |-  Rel  `' ( A  \  B )
2 difss 3289 . . 3  |-  ( `' A  \  `' B
)  C_  `' A
3 relcnv 5047 . . 3  |-  Rel  `' A
4 relss 4750 . . 3  |-  ( ( `' A  \  `' B
)  C_  `' A  ->  ( Rel  `' A  ->  Rel  ( `' A  \  `' B ) ) )
52, 3, 4mp2 16 . 2  |-  Rel  ( `' A  \  `' B
)
6 eldif 3166 . . 3  |-  ( <.
y ,  x >.  e.  ( A  \  B
)  <->  ( <. y ,  x >.  e.  A  /\  -.  <. y ,  x >.  e.  B ) )
7 vex 2766 . . . 4  |-  x  e. 
_V
8 vex 2766 . . . 4  |-  y  e. 
_V
97, 8opelcnv 4848 . . 3  |-  ( <.
x ,  y >.  e.  `' ( A  \  B )  <->  <. y ,  x >.  e.  ( A  \  B ) )
10 eldif 3166 . . . 4  |-  ( <.
x ,  y >.  e.  ( `' A  \  `' B )  <->  ( <. x ,  y >.  e.  `' A  /\  -.  <. x ,  y >.  e.  `' B ) )
117, 8opelcnv 4848 . . . . 5  |-  ( <.
x ,  y >.  e.  `' A  <->  <. y ,  x >.  e.  A )
127, 8opelcnv 4848 . . . . . 6  |-  ( <.
x ,  y >.  e.  `' B  <->  <. y ,  x >.  e.  B )
1312notbii 669 . . . . 5  |-  ( -. 
<. x ,  y >.  e.  `' B  <->  -.  <. y ,  x >.  e.  B
)
1411, 13anbi12i 460 . . . 4  |-  ( (
<. x ,  y >.  e.  `' A  /\  -.  <. x ,  y >.  e.  `' B )  <->  ( <. y ,  x >.  e.  A  /\  -.  <. y ,  x >.  e.  B ) )
1510, 14bitri 184 . . 3  |-  ( <.
x ,  y >.  e.  ( `' A  \  `' B )  <->  ( <. y ,  x >.  e.  A  /\  -.  <. y ,  x >.  e.  B ) )
166, 9, 153bitr4i 212 . 2  |-  ( <.
x ,  y >.  e.  `' ( A  \  B )  <->  <. x ,  y >.  e.  ( `' A  \  `' B
) )
171, 5, 16eqrelriiv 4757 1  |-  `' ( A  \  B )  =  ( `' A  \  `' B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1364    e. wcel 2167    \ cdif 3154    C_ wss 3157   <.cop 3625   `'ccnv 4662   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator