Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvi | Unicode version |
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . 5 | |
2 | 1 | ideq 4761 | . . . 4 |
3 | equcom 1699 | . . . 4 | |
4 | 2, 3 | bitri 183 | . . 3 |
5 | 4 | opabbii 4054 | . 2 |
6 | df-cnv 4617 | . 2 | |
7 | df-id 4276 | . 2 | |
8 | 5, 6, 7 | 3eqtr4i 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 class class class wbr 3987 copab 4047 cid 4271 ccnv 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 |
This theorem is referenced by: coi2 5125 funi 5228 cnvresid 5270 fcoi1 5376 ssdomg 6754 |
Copyright terms: Public domain | W3C validator |