ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvi Unicode version

Theorem cnvi 5033
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvi  |-  `'  _I  =  _I

Proof of Theorem cnvi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2740 . . . . 5  |-  x  e. 
_V
21ideq 4779 . . . 4  |-  ( y  _I  x  <->  y  =  x )
3 equcom 1706 . . . 4  |-  ( y  =  x  <->  x  =  y )
42, 3bitri 184 . . 3  |-  ( y  _I  x  <->  x  =  y )
54opabbii 4070 . 2  |-  { <. x ,  y >.  |  y  _I  x }  =  { <. x ,  y
>.  |  x  =  y }
6 df-cnv 4634 . 2  |-  `'  _I  =  { <. x ,  y
>.  |  y  _I  x }
7 df-id 4293 . 2  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
85, 6, 73eqtr4i 2208 1  |-  `'  _I  =  _I
Colors of variables: wff set class
Syntax hints:    = wceq 1353   class class class wbr 4003   {copab 4063    _I cid 4288   `'ccnv 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634
This theorem is referenced by:  coi2  5145  funi  5248  cnvresid  5290  fcoi1  5396  ssdomg  6777
  Copyright terms: Public domain W3C validator