ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvi Unicode version

Theorem cnvi 5008
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvi  |-  `'  _I  =  _I

Proof of Theorem cnvi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . . 5  |-  x  e. 
_V
21ideq 4756 . . . 4  |-  ( y  _I  x  <->  y  =  x )
3 equcom 1694 . . . 4  |-  ( y  =  x  <->  x  =  y )
42, 3bitri 183 . . 3  |-  ( y  _I  x  <->  x  =  y )
54opabbii 4049 . 2  |-  { <. x ,  y >.  |  y  _I  x }  =  { <. x ,  y
>.  |  x  =  y }
6 df-cnv 4612 . 2  |-  `'  _I  =  { <. x ,  y
>.  |  y  _I  x }
7 df-id 4271 . 2  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
85, 6, 73eqtr4i 2196 1  |-  `'  _I  =  _I
Colors of variables: wff set class
Syntax hints:    = wceq 1343   class class class wbr 3982   {copab 4042    _I cid 4266   `'ccnv 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612
This theorem is referenced by:  coi2  5120  funi  5220  cnvresid  5262  fcoi1  5368  ssdomg  6744
  Copyright terms: Public domain W3C validator