ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvi Unicode version

Theorem cnvi 5034
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvi  |-  `'  _I  =  _I

Proof of Theorem cnvi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2741 . . . . 5  |-  x  e. 
_V
21ideq 4780 . . . 4  |-  ( y  _I  x  <->  y  =  x )
3 equcom 1706 . . . 4  |-  ( y  =  x  <->  x  =  y )
42, 3bitri 184 . . 3  |-  ( y  _I  x  <->  x  =  y )
54opabbii 4071 . 2  |-  { <. x ,  y >.  |  y  _I  x }  =  { <. x ,  y
>.  |  x  =  y }
6 df-cnv 4635 . 2  |-  `'  _I  =  { <. x ,  y
>.  |  y  _I  x }
7 df-id 4294 . 2  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
85, 6, 73eqtr4i 2208 1  |-  `'  _I  =  _I
Colors of variables: wff set class
Syntax hints:    = wceq 1353   class class class wbr 4004   {copab 4064    _I cid 4289   `'ccnv 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635
This theorem is referenced by:  coi2  5146  funi  5249  cnvresid  5291  fcoi1  5397  ssdomg  6778
  Copyright terms: Public domain W3C validator