ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmtpos Unicode version

Theorem reldmtpos 6273
Description: Necessary and sufficient condition for  dom tpos  F to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reldmtpos  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )

Proof of Theorem reldmtpos
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4145 . . . . 5  |-  (/)  e.  _V
21eldm 4839 . . . 4  |-  ( (/)  e.  dom  F  <->  E. y (/) F y )
3 vex 2755 . . . . . . 7  |-  y  e. 
_V
4 brtpos0 6272 . . . . . . 7  |-  ( y  e.  _V  ->  ( (/)tpos  F y  <->  (/) F y ) )
53, 4ax-mp 5 . . . . . 6  |-  ( (/)tpos  F y  <->  (/) F y )
6 0nelxp 4669 . . . . . . . 8  |-  -.  (/)  e.  ( _V  X.  _V )
7 df-rel 4648 . . . . . . . . 9  |-  ( Rel 
dom tpos  F  <->  dom tpos  F  C_  ( _V 
X.  _V ) )
8 ssel 3164 . . . . . . . . 9  |-  ( dom tpos  F  C_  ( _V  X.  _V )  ->  ( (/)  e.  dom tpos  F  ->  (/)  e.  ( _V  X.  _V )
) )
97, 8sylbi 121 . . . . . . . 8  |-  ( Rel 
dom tpos  F  ->  ( (/)  e.  dom tpos  F  ->  (/)  e.  ( _V 
X.  _V ) ) )
106, 9mtoi 665 . . . . . . 7  |-  ( Rel 
dom tpos  F  ->  -.  (/)  e.  dom tpos  F )
111, 3breldm 4846 . . . . . . 7  |-  ( (/)tpos  F y  ->  (/)  e.  dom tpos  F )
1210, 11nsyl3 627 . . . . . 6  |-  ( (/)tpos  F y  ->  -.  Rel  dom tpos  F )
135, 12sylbir 135 . . . . 5  |-  ( (/) F y  ->  -.  Rel  dom tpos  F )
1413exlimiv 1609 . . . 4  |-  ( E. y (/) F y  ->  -.  Rel  dom tpos  F )
152, 14sylbi 121 . . 3  |-  ( (/)  e.  dom  F  ->  -.  Rel  dom tpos  F )
1615con2i 628 . 2  |-  ( Rel 
dom tpos  F  ->  -.  (/)  e.  dom  F )
17 vex 2755 . . . . . 6  |-  x  e. 
_V
1817eldm 4839 . . . . 5  |-  ( x  e.  dom tpos  F  <->  E. y  xtpos  F y )
19 relcnv 5021 . . . . . . . . . . 11  |-  Rel  `' dom  F
20 df-rel 4648 . . . . . . . . . . 11  |-  ( Rel  `' dom  F  <->  `' dom  F 
C_  ( _V  X.  _V ) )
2119, 20mpbi 145 . . . . . . . . . 10  |-  `' dom  F 
C_  ( _V  X.  _V )
2221sseli 3166 . . . . . . . . 9  |-  ( x  e.  `' dom  F  ->  x  e.  ( _V 
X.  _V ) )
2322a1i 9 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e.  `' dom  F  ->  x  e.  ( _V  X.  _V ) ) )
24 elsni 3625 . . . . . . . . . . . 12  |-  ( x  e.  { (/) }  ->  x  =  (/) )
2524breq1d 4028 . . . . . . . . . . 11  |-  ( x  e.  { (/) }  ->  ( xtpos  F y  <->  (/)tpos  F y ) )
261, 3breldm 4846 . . . . . . . . . . . . 13  |-  ( (/) F y  ->  (/)  e.  dom  F )
2726pm2.24d 623 . . . . . . . . . . . 12  |-  ( (/) F y  ->  ( -.  (/)  e.  dom  F  ->  x  e.  ( _V 
X.  _V ) ) )
285, 27sylbi 121 . . . . . . . . . . 11  |-  ( (/)tpos  F y  ->  ( -.  (/) 
e.  dom  F  ->  x  e.  ( _V  X.  _V ) ) )
2925, 28biimtrdi 163 . . . . . . . . . 10  |-  ( x  e.  { (/) }  ->  ( xtpos  F y  -> 
( -.  (/)  e.  dom  F  ->  x  e.  ( _V  X.  _V )
) ) )
3029com3l 81 . . . . . . . . 9  |-  ( xtpos 
F y  ->  ( -.  (/)  e.  dom  F  ->  ( x  e.  { (/)
}  ->  x  e.  ( _V  X.  _V )
) ) )
3130impcom 125 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e. 
{ (/) }  ->  x  e.  ( _V  X.  _V ) ) )
32 brtpos2 6271 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  (
xtpos  F y  <->  ( x  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { x } F
y ) ) )
333, 32ax-mp 5 . . . . . . . . . . 11  |-  ( xtpos 
F y  <->  ( x  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { x } F
y ) )
3433simplbi 274 . . . . . . . . . 10  |-  ( xtpos 
F y  ->  x  e.  ( `' dom  F  u.  { (/) } ) )
35 elun 3291 . . . . . . . . . 10  |-  ( x  e.  ( `' dom  F  u.  { (/) } )  <-> 
( x  e.  `' dom  F  \/  x  e. 
{ (/) } ) )
3634, 35sylib 122 . . . . . . . . 9  |-  ( xtpos 
F y  ->  (
x  e.  `' dom  F  \/  x  e.  { (/)
} ) )
3736adantl 277 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e.  `' dom  F  \/  x  e.  { (/) } ) )
3823, 31, 37mpjaod 719 . . . . . . 7  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  x  e.  ( _V  X.  _V )
)
3938ex 115 . . . . . 6  |-  ( -.  (/)  e.  dom  F  -> 
( xtpos  F y  ->  x  e.  ( _V  X.  _V )
) )
4039exlimdv 1830 . . . . 5  |-  ( -.  (/)  e.  dom  F  -> 
( E. y  xtpos 
F y  ->  x  e.  ( _V  X.  _V ) ) )
4118, 40biimtrid 152 . . . 4  |-  ( -.  (/)  e.  dom  F  -> 
( x  e.  dom tpos  F  ->  x  e.  ( _V  X.  _V )
) )
4241ssrdv 3176 . . 3  |-  ( -.  (/)  e.  dom  F  ->  dom tpos  F  C_  ( _V  X.  _V ) )
4342, 7sylibr 134 . 2  |-  ( -.  (/)  e.  dom  F  ->  Rel  dom tpos  F )
4416, 43impbii 126 1  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709   E.wex 1503    e. wcel 2160   _Vcvv 2752    u. cun 3142    C_ wss 3144   (/)c0 3437   {csn 3607   U.cuni 3824   class class class wbr 4018    X. cxp 4639   `'ccnv 4640   dom cdm 4641   Rel wrel 4646  tpos ctpos 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-fv 5240  df-tpos 6265
This theorem is referenced by:  dmtpos  6276
  Copyright terms: Public domain W3C validator