ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmtpos Unicode version

Theorem reldmtpos 6032
Description: Necessary and sufficient condition for  dom tpos  F to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reldmtpos  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )

Proof of Theorem reldmtpos
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 3972 . . . . 5  |-  (/)  e.  _V
21eldm 4646 . . . 4  |-  ( (/)  e.  dom  F  <->  E. y (/) F y )
3 vex 2623 . . . . . . 7  |-  y  e. 
_V
4 brtpos0 6031 . . . . . . 7  |-  ( y  e.  _V  ->  ( (/)tpos  F y  <->  (/) F y ) )
53, 4ax-mp 7 . . . . . 6  |-  ( (/)tpos  F y  <->  (/) F y )
6 0nelxp 4479 . . . . . . . 8  |-  -.  (/)  e.  ( _V  X.  _V )
7 df-rel 4459 . . . . . . . . 9  |-  ( Rel 
dom tpos  F  <->  dom tpos  F  C_  ( _V 
X.  _V ) )
8 ssel 3020 . . . . . . . . 9  |-  ( dom tpos  F  C_  ( _V  X.  _V )  ->  ( (/)  e.  dom tpos  F  ->  (/)  e.  ( _V  X.  _V )
) )
97, 8sylbi 120 . . . . . . . 8  |-  ( Rel 
dom tpos  F  ->  ( (/)  e.  dom tpos  F  ->  (/)  e.  ( _V 
X.  _V ) ) )
106, 9mtoi 626 . . . . . . 7  |-  ( Rel 
dom tpos  F  ->  -.  (/)  e.  dom tpos  F )
111, 3breldm 4653 . . . . . . 7  |-  ( (/)tpos  F y  ->  (/)  e.  dom tpos  F )
1210, 11nsyl3 592 . . . . . 6  |-  ( (/)tpos  F y  ->  -.  Rel  dom tpos  F )
135, 12sylbir 134 . . . . 5  |-  ( (/) F y  ->  -.  Rel  dom tpos  F )
1413exlimiv 1535 . . . 4  |-  ( E. y (/) F y  ->  -.  Rel  dom tpos  F )
152, 14sylbi 120 . . 3  |-  ( (/)  e.  dom  F  ->  -.  Rel  dom tpos  F )
1615con2i 593 . 2  |-  ( Rel 
dom tpos  F  ->  -.  (/)  e.  dom  F )
17 vex 2623 . . . . . 6  |-  x  e. 
_V
1817eldm 4646 . . . . 5  |-  ( x  e.  dom tpos  F  <->  E. y  xtpos  F y )
19 relcnv 4823 . . . . . . . . . . 11  |-  Rel  `' dom  F
20 df-rel 4459 . . . . . . . . . . 11  |-  ( Rel  `' dom  F  <->  `' dom  F 
C_  ( _V  X.  _V ) )
2119, 20mpbi 144 . . . . . . . . . 10  |-  `' dom  F 
C_  ( _V  X.  _V )
2221sseli 3022 . . . . . . . . 9  |-  ( x  e.  `' dom  F  ->  x  e.  ( _V 
X.  _V ) )
2322a1i 9 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e.  `' dom  F  ->  x  e.  ( _V  X.  _V ) ) )
24 elsni 3468 . . . . . . . . . . . 12  |-  ( x  e.  { (/) }  ->  x  =  (/) )
2524breq1d 3861 . . . . . . . . . . 11  |-  ( x  e.  { (/) }  ->  ( xtpos  F y  <->  (/)tpos  F y ) )
261, 3breldm 4653 . . . . . . . . . . . . 13  |-  ( (/) F y  ->  (/)  e.  dom  F )
2726pm2.24d 588 . . . . . . . . . . . 12  |-  ( (/) F y  ->  ( -.  (/)  e.  dom  F  ->  x  e.  ( _V 
X.  _V ) ) )
285, 27sylbi 120 . . . . . . . . . . 11  |-  ( (/)tpos  F y  ->  ( -.  (/) 
e.  dom  F  ->  x  e.  ( _V  X.  _V ) ) )
2925, 28syl6bi 162 . . . . . . . . . 10  |-  ( x  e.  { (/) }  ->  ( xtpos  F y  -> 
( -.  (/)  e.  dom  F  ->  x  e.  ( _V  X.  _V )
) ) )
3029com3l 81 . . . . . . . . 9  |-  ( xtpos 
F y  ->  ( -.  (/)  e.  dom  F  ->  ( x  e.  { (/)
}  ->  x  e.  ( _V  X.  _V )
) ) )
3130impcom 124 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e. 
{ (/) }  ->  x  e.  ( _V  X.  _V ) ) )
32 brtpos2 6030 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  (
xtpos  F y  <->  ( x  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { x } F
y ) ) )
333, 32ax-mp 7 . . . . . . . . . . 11  |-  ( xtpos 
F y  <->  ( x  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { x } F
y ) )
3433simplbi 269 . . . . . . . . . 10  |-  ( xtpos 
F y  ->  x  e.  ( `' dom  F  u.  { (/) } ) )
35 elun 3142 . . . . . . . . . 10  |-  ( x  e.  ( `' dom  F  u.  { (/) } )  <-> 
( x  e.  `' dom  F  \/  x  e. 
{ (/) } ) )
3634, 35sylib 121 . . . . . . . . 9  |-  ( xtpos 
F y  ->  (
x  e.  `' dom  F  \/  x  e.  { (/)
} ) )
3736adantl 272 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e.  `' dom  F  \/  x  e.  { (/) } ) )
3823, 31, 37mpjaod 674 . . . . . . 7  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  x  e.  ( _V  X.  _V )
)
3938ex 114 . . . . . 6  |-  ( -.  (/)  e.  dom  F  -> 
( xtpos  F y  ->  x  e.  ( _V  X.  _V )
) )
4039exlimdv 1748 . . . . 5  |-  ( -.  (/)  e.  dom  F  -> 
( E. y  xtpos 
F y  ->  x  e.  ( _V  X.  _V ) ) )
4118, 40syl5bi 151 . . . 4  |-  ( -.  (/)  e.  dom  F  -> 
( x  e.  dom tpos  F  ->  x  e.  ( _V  X.  _V )
) )
4241ssrdv 3032 . . 3  |-  ( -.  (/)  e.  dom  F  ->  dom tpos  F  C_  ( _V  X.  _V ) )
4342, 7sylibr 133 . 2  |-  ( -.  (/)  e.  dom  F  ->  Rel  dom tpos  F )
4416, 43impbii 125 1  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 665   E.wex 1427    e. wcel 1439   _Vcvv 2620    u. cun 2998    C_ wss 3000   (/)c0 3287   {csn 3450   U.cuni 3659   class class class wbr 3851    X. cxp 4450   `'ccnv 4451   dom cdm 4452   Rel wrel 4457  tpos ctpos 6023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-fv 5036  df-tpos 6024
This theorem is referenced by:  dmtpos  6035
  Copyright terms: Public domain W3C validator