ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldmtpos Unicode version

Theorem reldmtpos 6000
Description: Necessary and sufficient condition for  dom tpos  F to be a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reldmtpos  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )

Proof of Theorem reldmtpos
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 3958 . . . . 5  |-  (/)  e.  _V
21eldm 4621 . . . 4  |-  ( (/)  e.  dom  F  <->  E. y (/) F y )
3 vex 2622 . . . . . . 7  |-  y  e. 
_V
4 brtpos0 5999 . . . . . . 7  |-  ( y  e.  _V  ->  ( (/)tpos  F y  <->  (/) F y ) )
53, 4ax-mp 7 . . . . . 6  |-  ( (/)tpos  F y  <->  (/) F y )
6 0nelxp 4455 . . . . . . . 8  |-  -.  (/)  e.  ( _V  X.  _V )
7 df-rel 4435 . . . . . . . . 9  |-  ( Rel 
dom tpos  F  <->  dom tpos  F  C_  ( _V 
X.  _V ) )
8 ssel 3017 . . . . . . . . 9  |-  ( dom tpos  F  C_  ( _V  X.  _V )  ->  ( (/)  e.  dom tpos  F  ->  (/)  e.  ( _V  X.  _V )
) )
97, 8sylbi 119 . . . . . . . 8  |-  ( Rel 
dom tpos  F  ->  ( (/)  e.  dom tpos  F  ->  (/)  e.  ( _V 
X.  _V ) ) )
106, 9mtoi 625 . . . . . . 7  |-  ( Rel 
dom tpos  F  ->  -.  (/)  e.  dom tpos  F )
111, 3breldm 4628 . . . . . . 7  |-  ( (/)tpos  F y  ->  (/)  e.  dom tpos  F )
1210, 11nsyl3 591 . . . . . 6  |-  ( (/)tpos  F y  ->  -.  Rel  dom tpos  F )
135, 12sylbir 133 . . . . 5  |-  ( (/) F y  ->  -.  Rel  dom tpos  F )
1413exlimiv 1534 . . . 4  |-  ( E. y (/) F y  ->  -.  Rel  dom tpos  F )
152, 14sylbi 119 . . 3  |-  ( (/)  e.  dom  F  ->  -.  Rel  dom tpos  F )
1615con2i 592 . 2  |-  ( Rel 
dom tpos  F  ->  -.  (/)  e.  dom  F )
17 vex 2622 . . . . . 6  |-  x  e. 
_V
1817eldm 4621 . . . . 5  |-  ( x  e.  dom tpos  F  <->  E. y  xtpos  F y )
19 relcnv 4797 . . . . . . . . . . 11  |-  Rel  `' dom  F
20 df-rel 4435 . . . . . . . . . . 11  |-  ( Rel  `' dom  F  <->  `' dom  F 
C_  ( _V  X.  _V ) )
2119, 20mpbi 143 . . . . . . . . . 10  |-  `' dom  F 
C_  ( _V  X.  _V )
2221sseli 3019 . . . . . . . . 9  |-  ( x  e.  `' dom  F  ->  x  e.  ( _V 
X.  _V ) )
2322a1i 9 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e.  `' dom  F  ->  x  e.  ( _V  X.  _V ) ) )
24 elsni 3459 . . . . . . . . . . . 12  |-  ( x  e.  { (/) }  ->  x  =  (/) )
2524breq1d 3847 . . . . . . . . . . 11  |-  ( x  e.  { (/) }  ->  ( xtpos  F y  <->  (/)tpos  F y ) )
261, 3breldm 4628 . . . . . . . . . . . . 13  |-  ( (/) F y  ->  (/)  e.  dom  F )
2726pm2.24d 587 . . . . . . . . . . . 12  |-  ( (/) F y  ->  ( -.  (/)  e.  dom  F  ->  x  e.  ( _V 
X.  _V ) ) )
285, 27sylbi 119 . . . . . . . . . . 11  |-  ( (/)tpos  F y  ->  ( -.  (/) 
e.  dom  F  ->  x  e.  ( _V  X.  _V ) ) )
2925, 28syl6bi 161 . . . . . . . . . 10  |-  ( x  e.  { (/) }  ->  ( xtpos  F y  -> 
( -.  (/)  e.  dom  F  ->  x  e.  ( _V  X.  _V )
) ) )
3029com3l 80 . . . . . . . . 9  |-  ( xtpos 
F y  ->  ( -.  (/)  e.  dom  F  ->  ( x  e.  { (/)
}  ->  x  e.  ( _V  X.  _V )
) ) )
3130impcom 123 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e. 
{ (/) }  ->  x  e.  ( _V  X.  _V ) ) )
32 brtpos2 5998 . . . . . . . . . . . 12  |-  ( y  e.  _V  ->  (
xtpos  F y  <->  ( x  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { x } F
y ) ) )
333, 32ax-mp 7 . . . . . . . . . . 11  |-  ( xtpos 
F y  <->  ( x  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { x } F
y ) )
3433simplbi 268 . . . . . . . . . 10  |-  ( xtpos 
F y  ->  x  e.  ( `' dom  F  u.  { (/) } ) )
35 elun 3139 . . . . . . . . . 10  |-  ( x  e.  ( `' dom  F  u.  { (/) } )  <-> 
( x  e.  `' dom  F  \/  x  e. 
{ (/) } ) )
3634, 35sylib 120 . . . . . . . . 9  |-  ( xtpos 
F y  ->  (
x  e.  `' dom  F  \/  x  e.  { (/)
} ) )
3736adantl 271 . . . . . . . 8  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  ( x  e.  `' dom  F  \/  x  e.  { (/) } ) )
3823, 31, 37mpjaod 673 . . . . . . 7  |-  ( ( -.  (/)  e.  dom  F  /\  xtpos  F y )  ->  x  e.  ( _V  X.  _V )
)
3938ex 113 . . . . . 6  |-  ( -.  (/)  e.  dom  F  -> 
( xtpos  F y  ->  x  e.  ( _V  X.  _V )
) )
4039exlimdv 1747 . . . . 5  |-  ( -.  (/)  e.  dom  F  -> 
( E. y  xtpos 
F y  ->  x  e.  ( _V  X.  _V ) ) )
4118, 40syl5bi 150 . . . 4  |-  ( -.  (/)  e.  dom  F  -> 
( x  e.  dom tpos  F  ->  x  e.  ( _V  X.  _V )
) )
4241ssrdv 3029 . . 3  |-  ( -.  (/)  e.  dom  F  ->  dom tpos  F  C_  ( _V  X.  _V ) )
4342, 7sylibr 132 . 2  |-  ( -.  (/)  e.  dom  F  ->  Rel  dom tpos  F )
4416, 43impbii 124 1  |-  ( Rel 
dom tpos  F  <->  -.  (/)  e.  dom  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664   E.wex 1426    e. wcel 1438   _Vcvv 2619    u. cun 2995    C_ wss 2997   (/)c0 3284   {csn 3441   U.cuni 3648   class class class wbr 3837    X. cxp 4426   `'ccnv 4427   dom cdm 4428   Rel wrel 4433  tpos ctpos 5991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-fv 5010  df-tpos 5992
This theorem is referenced by:  dmtpos  6003
  Copyright terms: Public domain W3C validator