ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbrng Unicode version

Theorem csbrng 5072
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbrng  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )

Proof of Theorem csbrng
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3110 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B } )
2 sbcexg 3009 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w [. A  /  x ]. <. w ,  y
>.  e.  B ) )
3 sbcel2g 3070 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. <. w ,  y
>.  e.  B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) )
43exbidv 1818 . . . . 5  |-  ( A  e.  V  ->  ( E. w [. A  /  x ]. <. w ,  y
>.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) )
52, 4bitrd 187 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B ) )
65abbidv 2288 . . 3  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } )
71, 6eqtrd 2203 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } )
8 dfrn3 4800 . . 3  |-  ran  B  =  { y  |  E. w <. w ,  y
>.  e.  B }
98csbeq2i 3076 . 2  |-  [_ A  /  x ]_ ran  B  =  [_ A  /  x ]_ { y  |  E. w <. w ,  y
>.  e.  B }
10 dfrn3 4800 . 2  |-  ran  [_ A  /  x ]_ B  =  { y  |  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B }
117, 9, 103eqtr4g 2228 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156   [.wsbc 2955   [_csb 3049   <.cop 3586   ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  sbcfg  5346
  Copyright terms: Public domain W3C validator