ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbrng Unicode version

Theorem csbrng 5108
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbrng  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )

Proof of Theorem csbrng
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3133 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B } )
2 sbcexg 3032 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w [. A  /  x ]. <. w ,  y
>.  e.  B ) )
3 sbcel2g 3093 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. <. w ,  y
>.  e.  B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) )
43exbidv 1836 . . . . 5  |-  ( A  e.  V  ->  ( E. w [. A  /  x ]. <. w ,  y
>.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) )
52, 4bitrd 188 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B ) )
65abbidv 2307 . . 3  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } )
71, 6eqtrd 2222 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } )
8 dfrn3 4834 . . 3  |-  ran  B  =  { y  |  E. w <. w ,  y
>.  e.  B }
98csbeq2i 3099 . 2  |-  [_ A  /  x ]_ ran  B  =  [_ A  /  x ]_ { y  |  E. w <. w ,  y
>.  e.  B }
10 dfrn3 4834 . 2  |-  ran  [_ A  /  x ]_ B  =  { y  |  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B }
117, 9, 103eqtr4g 2247 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1503    e. wcel 2160   {cab 2175   [.wsbc 2977   [_csb 3072   <.cop 3610   ran crn 4645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-cnv 4652  df-dm 4654  df-rn 4655
This theorem is referenced by:  sbcfg  5383
  Copyright terms: Public domain W3C validator