ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbrng Unicode version

Theorem csbrng 5008
Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbrng  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )

Proof of Theorem csbrng
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbabg 3066 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B }  =  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B } )
2 sbcexg 2967 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w [. A  /  x ]. <. w ,  y
>.  e.  B ) )
3 sbcel2g 3028 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. <. w ,  y
>.  e.  B  <->  <. w ,  y >.  e.  [_ A  /  x ]_ B ) )
43exbidv 1798 . . . . 5  |-  ( A  e.  V  ->  ( E. w [. A  /  x ]. <. w ,  y
>.  e.  B  <->  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B ) )
52, 4bitrd 187 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. E. w <. w ,  y >.  e.  B  <->  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B ) )
65abbidv 2258 . . 3  |-  ( A  e.  V  ->  { y  |  [. A  /  x ]. E. w <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } )
71, 6eqtrd 2173 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { y  |  E. w <. w ,  y >.  e.  B }  =  { y  |  E. w <. w ,  y >.  e.  [_ A  /  x ]_ B } )
8 dfrn3 4736 . . 3  |-  ran  B  =  { y  |  E. w <. w ,  y
>.  e.  B }
98csbeq2i 3034 . 2  |-  [_ A  /  x ]_ ran  B  =  [_ A  /  x ]_ { y  |  E. w <. w ,  y
>.  e.  B }
10 dfrn3 4736 . 2  |-  ran  [_ A  /  x ]_ B  =  { y  |  E. w <. w ,  y
>.  e.  [_ A  /  x ]_ B }
117, 9, 103eqtr4g 2198 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ran  B  =  ran  [_ A  /  x ]_ B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332   E.wex 1469    e. wcel 1481   {cab 2126   [.wsbc 2913   [_csb 3007   <.cop 3535   ran crn 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-cnv 4555  df-dm 4557  df-rn 4558
This theorem is referenced by:  sbcfg  5279
  Copyright terms: Public domain W3C validator