ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemjpcl Unicode version

Theorem iseqf1olemjpcl 10236
Description: Lemma for seq3f1o 10245. A closure lemma involving  J and  P. (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemjpcl.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemjpcl.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
iseqf1olemjpcl  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ J  /  f ]_ P `  x )  e.  S
)
Distinct variable groups:    x, G, f   
x, J, f    u, J    u, K    x, K    x, M, f    u, M   
f, N, x    u, N    x, Q, f    x, S    ph, u    ph, x
Allowed substitution hints:    ph( f)    P( x, u, f)    Q( u)    S( u, f)    G( u)    K( f)

Proof of Theorem iseqf1olemjpcl
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemjpcl.p . . . . 5  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
21csbeq2i 2999 . . . 4  |-  [_ J  /  f ]_ P  =  [_ J  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
3 iseqf1olemqf.j . . . . . . 7  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
4 f1of 5335 . . . . . . 7  |-  ( J : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  J :
( M ... N
) --> ( M ... N ) )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  J : ( M ... N ) --> ( M ... N ) )
6 iseqf1olemqf.k . . . . . . . 8  |-  ( ph  ->  K  e.  ( M ... N ) )
7 elfzel1 9773 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
86, 7syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
9 elfzel2 9772 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
106, 9syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
118, 10fzfigd 10172 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
12 fex 5615 . . . . . 6  |-  ( ( J : ( M ... N ) --> ( M ... N )  /\  ( M ... N )  e.  Fin )  ->  J  e.  _V )
135, 11, 12syl2anc 408 . . . . 5  |-  ( ph  ->  J  e.  _V )
14 nfcvd 2259 . . . . . 6  |-  ( J  e.  _V  ->  F/_ f
( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( J `  x ) ) ,  ( G `
 M ) ) ) )
15 fveq1 5388 . . . . . . . . 9  |-  ( f  =  J  ->  (
f `  x )  =  ( J `  x ) )
1615fveq2d 5393 . . . . . . . 8  |-  ( f  =  J  ->  ( G `  ( f `  x ) )  =  ( G `  ( J `  x )
) )
1716ifeq1d 3459 . . . . . . 7  |-  ( f  =  J  ->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( J `
 x ) ) ,  ( G `  M ) ) )
1817mpteq2dv 3989 . . . . . 6  |-  ( f  =  J  ->  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( J `
 x ) ) ,  ( G `  M ) ) ) )
1914, 18csbiegf 3013 . . . . 5  |-  ( J  e.  _V  ->  [_ J  /  f ]_ (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( J `
 x ) ) ,  ( G `  M ) ) ) )
2013, 19syl 14 . . . 4  |-  ( ph  ->  [_ J  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( J `  x )
) ,  ( G `
 M ) ) ) )
212, 20syl5eq 2162 . . 3  |-  ( ph  ->  [_ J  /  f ]_ P  =  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( J `  x )
) ,  ( G `
 M ) ) ) )
22 fveq2 5389 . . . . . 6  |-  ( a  =  ( J `  x )  ->  ( G `  a )  =  ( G `  ( J `  x ) ) )
2322eleq1d 2186 . . . . 5  |-  ( a  =  ( J `  x )  ->  (
( G `  a
)  e.  S  <->  ( G `  ( J `  x
) )  e.  S
) )
24 iseqf1olemjpcl.g . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
2524ralrimiva 2482 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
26 fveq2 5389 . . . . . . . . 9  |-  ( x  =  a  ->  ( G `  x )  =  ( G `  a ) )
2726eleq1d 2186 . . . . . . . 8  |-  ( x  =  a  ->  (
( G `  x
)  e.  S  <->  ( G `  a )  e.  S
) )
2827cbvralv 2631 . . . . . . 7  |-  ( A. x  e.  ( ZZ>= `  M ) ( G `
 x )  e.  S  <->  A. a  e.  (
ZZ>= `  M ) ( G `  a )  e.  S )
2925, 28sylib 121 . . . . . 6  |-  ( ph  ->  A. a  e.  (
ZZ>= `  M ) ( G `  a )  e.  S )
3029ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  A. a  e.  ( ZZ>= `  M )
( G `  a
)  e.  S )
315ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  J :
( M ... N
) --> ( M ... N ) )
32 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  <_  N )
33 simplr 504 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ( ZZ>= `  M )
)
3410ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  N  e.  ZZ )
35 elfz5 9766 . . . . . . . . 9  |-  ( ( x  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  (
x  e.  ( M ... N )  <->  x  <_  N ) )
3633, 34, 35syl2anc 408 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( x  e.  ( M ... N
)  <->  x  <_  N ) )
3732, 36mpbird 166 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ( M ... N ) )
3831, 37ffvelrnd 5524 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( J `  x )  e.  ( M ... N ) )
39 elfzuz 9770 . . . . . 6  |-  ( ( J `  x )  e.  ( M ... N )  ->  ( J `  x )  e.  ( ZZ>= `  M )
)
4038, 39syl 14 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( J `  x )  e.  (
ZZ>= `  M ) )
4123, 30, 40rspcdva 2768 . . . 4  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( G `  ( J `  x
) )  e.  S
)
42 fveq2 5389 . . . . . 6  |-  ( a  =  M  ->  ( G `  a )  =  ( G `  M ) )
4342eleq1d 2186 . . . . 5  |-  ( a  =  M  ->  (
( G `  a
)  e.  S  <->  ( G `  M )  e.  S
) )
4429ad2antrr 479 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  A. a  e.  ( ZZ>= `  M )
( G `  a
)  e.  S )
458ad2antrr 479 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  M  e.  ZZ )
46 uzid 9308 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
4745, 46syl 14 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  M  e.  ( ZZ>= `  M )
)
4843, 44, 47rspcdva 2768 . . . 4  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  ( G `  M )  e.  S )
49 eluzelz 9303 . . . . 5  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
50 zdcle 9095 . . . . 5  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  -> DECID  x  <_  N )
5149, 10, 50syl2anr 288 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  -> DECID  x  <_  N )
5241, 48, 51ifcldadc 3471 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  if (
x  <_  N , 
( G `  ( J `  x )
) ,  ( G `
 M ) )  e.  S )
5321, 52fvmpt2d 5475 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ J  /  f ]_ P `  x )  =  if ( x  <_  N ,  ( G `  ( J `  x ) ) ,  ( G `
 M ) ) )
5453, 52eqeltrd 2194 1  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ J  /  f ]_ P `  x )  e.  S
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 804    = wceq 1316    e. wcel 1465   A.wral 2393   _Vcvv 2660   [_csb 2975   ifcif 3444   class class class wbr 3899    |-> cmpt 3959   `'ccnv 4508   -->wf 5089   -1-1-onto->wf1o 5092   ` cfv 5093  (class class class)co 5742   Fincfn 6602   1c1 7589    <_ cle 7769    - cmin 7901   ZZcz 9022   ZZ>=cuz 9294   ...cfz 9758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-1o 6281  df-er 6397  df-en 6603  df-fin 6605  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-fz 9759
This theorem is referenced by:  seq3f1olemqsumkj  10239  seq3f1olemqsumk  10240  seq3f1olemqsum  10241
  Copyright terms: Public domain W3C validator