| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iseqf1olemjpcl | Unicode version | ||
| Description: Lemma for seq3f1o 10739. A closure lemma involving |
| Ref | Expression |
|---|---|
| iseqf1olemqf.k |
|
| iseqf1olemqf.j |
|
| iseqf1olemqf.q |
|
| iseqf1olemjpcl.g |
|
| iseqf1olemjpcl.p |
|
| Ref | Expression |
|---|---|
| iseqf1olemjpcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1olemjpcl.p |
. . . . 5
| |
| 2 | 1 | csbeq2i 3151 |
. . . 4
|
| 3 | iseqf1olemqf.j |
. . . . . . 7
| |
| 4 | f1of 5572 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | iseqf1olemqf.k |
. . . . . . . 8
| |
| 7 | elfzel1 10220 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
|
| 9 | elfzel2 10219 |
. . . . . . . 8
| |
| 10 | 6, 9 | syl 14 |
. . . . . . 7
|
| 11 | 8, 10 | fzfigd 10653 |
. . . . . 6
|
| 12 | fex 5868 |
. . . . . 6
| |
| 13 | 5, 11, 12 | syl2anc 411 |
. . . . 5
|
| 14 | nfcvd 2373 |
. . . . . 6
| |
| 15 | fveq1 5626 |
. . . . . . . . 9
| |
| 16 | 15 | fveq2d 5631 |
. . . . . . . 8
|
| 17 | 16 | ifeq1d 3620 |
. . . . . . 7
|
| 18 | 17 | mpteq2dv 4175 |
. . . . . 6
|
| 19 | 14, 18 | csbiegf 3168 |
. . . . 5
|
| 20 | 13, 19 | syl 14 |
. . . 4
|
| 21 | 2, 20 | eqtrid 2274 |
. . 3
|
| 22 | fveq2 5627 |
. . . . . 6
| |
| 23 | 22 | eleq1d 2298 |
. . . . 5
|
| 24 | iseqf1olemjpcl.g |
. . . . . . . 8
| |
| 25 | 24 | ralrimiva 2603 |
. . . . . . 7
|
| 26 | fveq2 5627 |
. . . . . . . . 9
| |
| 27 | 26 | eleq1d 2298 |
. . . . . . . 8
|
| 28 | 27 | cbvralv 2765 |
. . . . . . 7
|
| 29 | 25, 28 | sylib 122 |
. . . . . 6
|
| 30 | 29 | ad2antrr 488 |
. . . . 5
|
| 31 | 5 | ad2antrr 488 |
. . . . . . 7
|
| 32 | simpr 110 |
. . . . . . . 8
| |
| 33 | simplr 528 |
. . . . . . . . 9
| |
| 34 | 10 | ad2antrr 488 |
. . . . . . . . 9
|
| 35 | elfz5 10213 |
. . . . . . . . 9
| |
| 36 | 33, 34, 35 | syl2anc 411 |
. . . . . . . 8
|
| 37 | 32, 36 | mpbird 167 |
. . . . . . 7
|
| 38 | 31, 37 | ffvelcdmd 5771 |
. . . . . 6
|
| 39 | elfzuz 10217 |
. . . . . 6
| |
| 40 | 38, 39 | syl 14 |
. . . . 5
|
| 41 | 23, 30, 40 | rspcdva 2912 |
. . . 4
|
| 42 | fveq2 5627 |
. . . . . 6
| |
| 43 | 42 | eleq1d 2298 |
. . . . 5
|
| 44 | 29 | ad2antrr 488 |
. . . . 5
|
| 45 | 8 | ad2antrr 488 |
. . . . . 6
|
| 46 | uzid 9736 |
. . . . . 6
| |
| 47 | 45, 46 | syl 14 |
. . . . 5
|
| 48 | 43, 44, 47 | rspcdva 2912 |
. . . 4
|
| 49 | eluzelz 9731 |
. . . . 5
| |
| 50 | zdcle 9523 |
. . . . 5
| |
| 51 | 49, 10, 50 | syl2anr 290 |
. . . 4
|
| 52 | 41, 48, 51 | ifcldadc 3632 |
. . 3
|
| 53 | 21, 52 | fvmpt2d 5721 |
. 2
|
| 54 | 53, 52 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-1o 6562 df-er 6680 df-en 6888 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: seq3f1olemqsumkj 10733 seq3f1olemqsumk 10734 seq3f1olemqsum 10735 |
| Copyright terms: Public domain | W3C validator |