ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqpcl Unicode version

Theorem iseqf1olemqpcl 9921
Description: Lemma for seq3f1o 9929. A closure lemma involving  Q and  P. (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemjpcl.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemjpcl.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
iseqf1olemqpcl  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ Q  /  f ]_ P `  x )  e.  S
)
Distinct variable groups:    x, G, f   
x, J, f    u, J    u, K    x, K    x, M, f    u, M   
f, N, x    u, N    x, Q, f    x, S    ph, u    ph, x
Allowed substitution hints:    ph( f)    P( x, u, f)    Q( u)    S( u, f)    G( u)    K( f)

Proof of Theorem iseqf1olemqpcl
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemjpcl.p . . . . 5  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
21csbeq2i 2957 . . . 4  |-  [_ Q  /  f ]_ P  =  [_ Q  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
3 iseqf1olemqf.q . . . . . 6  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
4 iseqf1olemqf.k . . . . . . . . 9  |-  ( ph  ->  K  e.  ( M ... N ) )
5 elfzel1 9437 . . . . . . . . 9  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
64, 5syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
7 elfzel2 9436 . . . . . . . . 9  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
84, 7syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
96, 8fzfigd 9834 . . . . . . 7  |-  ( ph  ->  ( M ... N
)  e.  Fin )
10 mptexg 5522 . . . . . . 7  |-  ( ( M ... N )  e.  Fin  ->  (
u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  e. 
_V )
119, 10syl 14 . . . . . 6  |-  ( ph  ->  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  e. 
_V )
123, 11syl5eqel 2174 . . . . 5  |-  ( ph  ->  Q  e.  _V )
13 nfcvd 2229 . . . . . 6  |-  ( Q  e.  _V  ->  F/_ f
( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( Q `  x ) ) ,  ( G `
 M ) ) ) )
14 fveq1 5304 . . . . . . . . 9  |-  ( f  =  Q  ->  (
f `  x )  =  ( Q `  x ) )
1514fveq2d 5309 . . . . . . . 8  |-  ( f  =  Q  ->  ( G `  ( f `  x ) )  =  ( G `  ( Q `  x )
) )
1615ifeq1d 3408 . . . . . . 7  |-  ( f  =  Q  ->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( Q `
 x ) ) ,  ( G `  M ) ) )
1716mpteq2dv 3929 . . . . . 6  |-  ( f  =  Q  ->  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( Q `
 x ) ) ,  ( G `  M ) ) ) )
1813, 17csbiegf 2971 . . . . 5  |-  ( Q  e.  _V  ->  [_ Q  /  f ]_ (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( Q `
 x ) ) ,  ( G `  M ) ) ) )
1912, 18syl 14 . . . 4  |-  ( ph  ->  [_ Q  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( Q `  x )
) ,  ( G `
 M ) ) ) )
202, 19syl5eq 2132 . . 3  |-  ( ph  ->  [_ Q  /  f ]_ P  =  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( Q `  x )
) ,  ( G `
 M ) ) ) )
21 fveq2 5305 . . . . . 6  |-  ( a  =  ( Q `  x )  ->  ( G `  a )  =  ( G `  ( Q `  x ) ) )
2221eleq1d 2156 . . . . 5  |-  ( a  =  ( Q `  x )  ->  (
( G `  a
)  e.  S  <->  ( G `  ( Q `  x
) )  e.  S
) )
23 iseqf1olemjpcl.g . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
2423ralrimiva 2446 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
25 fveq2 5305 . . . . . . . . 9  |-  ( x  =  a  ->  ( G `  x )  =  ( G `  a ) )
2625eleq1d 2156 . . . . . . . 8  |-  ( x  =  a  ->  (
( G `  x
)  e.  S  <->  ( G `  a )  e.  S
) )
2726cbvralv 2590 . . . . . . 7  |-  ( A. x  e.  ( ZZ>= `  M ) ( G `
 x )  e.  S  <->  A. a  e.  (
ZZ>= `  M ) ( G `  a )  e.  S )
2824, 27sylib 120 . . . . . 6  |-  ( ph  ->  A. a  e.  (
ZZ>= `  M ) ( G `  a )  e.  S )
2928ad2antrr 472 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  A. a  e.  ( ZZ>= `  M )
( G `  a
)  e.  S )
30 iseqf1olemqf.j . . . . . . . . 9  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
314, 30, 3iseqf1olemqf 9916 . . . . . . . 8  |-  ( ph  ->  Q : ( M ... N ) --> ( M ... N ) )
3231ad2antrr 472 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  Q :
( M ... N
) --> ( M ... N ) )
33 simpr 108 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  <_  N )
34 simplr 497 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ( ZZ>= `  M )
)
358ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  N  e.  ZZ )
36 elfz5 9430 . . . . . . . . 9  |-  ( ( x  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  (
x  e.  ( M ... N )  <->  x  <_  N ) )
3734, 35, 36syl2anc 403 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( x  e.  ( M ... N
)  <->  x  <_  N ) )
3833, 37mpbird 165 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ( M ... N ) )
3932, 38ffvelrnd 5435 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( Q `  x )  e.  ( M ... N ) )
40 elfzuz 9434 . . . . . 6  |-  ( ( Q `  x )  e.  ( M ... N )  ->  ( Q `  x )  e.  ( ZZ>= `  M )
)
4139, 40syl 14 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( Q `  x )  e.  (
ZZ>= `  M ) )
4222, 29, 41rspcdva 2727 . . . 4  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( G `  ( Q `  x
) )  e.  S
)
43 fveq2 5305 . . . . . 6  |-  ( a  =  M  ->  ( G `  a )  =  ( G `  M ) )
4443eleq1d 2156 . . . . 5  |-  ( a  =  M  ->  (
( G `  a
)  e.  S  <->  ( G `  M )  e.  S
) )
4528ad2antrr 472 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  A. a  e.  ( ZZ>= `  M )
( G `  a
)  e.  S )
466ad2antrr 472 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  M  e.  ZZ )
47 uzid 9031 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
4846, 47syl 14 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  M  e.  ( ZZ>= `  M )
)
4944, 45, 48rspcdva 2727 . . . 4  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  ( G `  M )  e.  S )
50 eluzelz 9026 . . . . 5  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
51 zdcle 8821 . . . . 5  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  -> DECID  x  <_  N )
5250, 8, 51syl2anr 284 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  -> DECID  x  <_  N )
5342, 49, 52ifcldadc 3420 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  if (
x  <_  N , 
( G `  ( Q `  x )
) ,  ( G `
 M ) )  e.  S )
5420, 53fvmpt2d 5389 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ Q  /  f ]_ P `  x )  =  if ( x  <_  N ,  ( G `  ( Q `  x ) ) ,  ( G `
 M ) ) )
5554, 53eqeltrd 2164 1  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ Q  /  f ]_ P `  x )  e.  S
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103  DECID wdc 780    = wceq 1289    e. wcel 1438   A.wral 2359   _Vcvv 2619   [_csb 2933   ifcif 3393   class class class wbr 3845    |-> cmpt 3899   `'ccnv 4437   -->wf 5011   -1-1-onto->wf1o 5014   ` cfv 5015  (class class class)co 5652   Fincfn 6455   1c1 7349    <_ cle 7521    - cmin 7651   ZZcz 8748   ZZ>=cuz 9017   ...cfz 9422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-apti 7458  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-1o 6181  df-er 6290  df-en 6456  df-fin 6458  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-inn 8421  df-n0 8672  df-z 8749  df-uz 9018  df-fz 9423
This theorem is referenced by:  seq3f1olemqsumkj  9923  seq3f1olemqsumk  9924  seq3f1olemqsum  9925
  Copyright terms: Public domain W3C validator