ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqpcl Unicode version

Theorem iseqf1olemqpcl 10580
Description: Lemma for seq3f1o 10588. A closure lemma involving  Q and  P. (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemjpcl.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemjpcl.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
iseqf1olemqpcl  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ Q  /  f ]_ P `  x )  e.  S
)
Distinct variable groups:    x, G, f   
x, J, f    u, J    u, K    x, K    x, M, f    u, M   
f, N, x    u, N    x, Q, f    x, S    ph, u    ph, x
Allowed substitution hints:    ph( f)    P( x, u, f)    Q( u)    S( u, f)    G( u)    K( f)

Proof of Theorem iseqf1olemqpcl
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemjpcl.p . . . . 5  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
21csbeq2i 3107 . . . 4  |-  [_ Q  /  f ]_ P  =  [_ Q  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
3 iseqf1olemqf.q . . . . . 6  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
4 iseqf1olemqf.k . . . . . . . . 9  |-  ( ph  ->  K  e.  ( M ... N ) )
5 elfzel1 10090 . . . . . . . . 9  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
64, 5syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
7 elfzel2 10089 . . . . . . . . 9  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
84, 7syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
96, 8fzfigd 10502 . . . . . . 7  |-  ( ph  ->  ( M ... N
)  e.  Fin )
10 mptexg 5783 . . . . . . 7  |-  ( ( M ... N )  e.  Fin  ->  (
u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  e. 
_V )
119, 10syl 14 . . . . . 6  |-  ( ph  ->  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  e. 
_V )
123, 11eqeltrid 2280 . . . . 5  |-  ( ph  ->  Q  e.  _V )
13 nfcvd 2337 . . . . . 6  |-  ( Q  e.  _V  ->  F/_ f
( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( Q `  x ) ) ,  ( G `
 M ) ) ) )
14 fveq1 5553 . . . . . . . . 9  |-  ( f  =  Q  ->  (
f `  x )  =  ( Q `  x ) )
1514fveq2d 5558 . . . . . . . 8  |-  ( f  =  Q  ->  ( G `  ( f `  x ) )  =  ( G `  ( Q `  x )
) )
1615ifeq1d 3574 . . . . . . 7  |-  ( f  =  Q  ->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( Q `
 x ) ) ,  ( G `  M ) ) )
1716mpteq2dv 4120 . . . . . 6  |-  ( f  =  Q  ->  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( Q `
 x ) ) ,  ( G `  M ) ) ) )
1813, 17csbiegf 3124 . . . . 5  |-  ( Q  e.  _V  ->  [_ Q  /  f ]_ (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( Q `
 x ) ) ,  ( G `  M ) ) ) )
1912, 18syl 14 . . . 4  |-  ( ph  ->  [_ Q  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( Q `  x )
) ,  ( G `
 M ) ) ) )
202, 19eqtrid 2238 . . 3  |-  ( ph  ->  [_ Q  /  f ]_ P  =  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( Q `  x )
) ,  ( G `
 M ) ) ) )
21 fveq2 5554 . . . . . 6  |-  ( a  =  ( Q `  x )  ->  ( G `  a )  =  ( G `  ( Q `  x ) ) )
2221eleq1d 2262 . . . . 5  |-  ( a  =  ( Q `  x )  ->  (
( G `  a
)  e.  S  <->  ( G `  ( Q `  x
) )  e.  S
) )
23 iseqf1olemjpcl.g . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
2423ralrimiva 2567 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
25 fveq2 5554 . . . . . . . . 9  |-  ( x  =  a  ->  ( G `  x )  =  ( G `  a ) )
2625eleq1d 2262 . . . . . . . 8  |-  ( x  =  a  ->  (
( G `  x
)  e.  S  <->  ( G `  a )  e.  S
) )
2726cbvralv 2726 . . . . . . 7  |-  ( A. x  e.  ( ZZ>= `  M ) ( G `
 x )  e.  S  <->  A. a  e.  (
ZZ>= `  M ) ( G `  a )  e.  S )
2824, 27sylib 122 . . . . . 6  |-  ( ph  ->  A. a  e.  (
ZZ>= `  M ) ( G `  a )  e.  S )
2928ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  A. a  e.  ( ZZ>= `  M )
( G `  a
)  e.  S )
30 iseqf1olemqf.j . . . . . . . . 9  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
314, 30, 3iseqf1olemqf 10575 . . . . . . . 8  |-  ( ph  ->  Q : ( M ... N ) --> ( M ... N ) )
3231ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  Q :
( M ... N
) --> ( M ... N ) )
33 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  <_  N )
34 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ( ZZ>= `  M )
)
358ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  N  e.  ZZ )
36 elfz5 10083 . . . . . . . . 9  |-  ( ( x  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  (
x  e.  ( M ... N )  <->  x  <_  N ) )
3734, 35, 36syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( x  e.  ( M ... N
)  <->  x  <_  N ) )
3833, 37mpbird 167 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ( M ... N ) )
3932, 38ffvelcdmd 5694 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( Q `  x )  e.  ( M ... N ) )
40 elfzuz 10087 . . . . . 6  |-  ( ( Q `  x )  e.  ( M ... N )  ->  ( Q `  x )  e.  ( ZZ>= `  M )
)
4139, 40syl 14 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( Q `  x )  e.  (
ZZ>= `  M ) )
4222, 29, 41rspcdva 2869 . . . 4  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( G `  ( Q `  x
) )  e.  S
)
43 fveq2 5554 . . . . . 6  |-  ( a  =  M  ->  ( G `  a )  =  ( G `  M ) )
4443eleq1d 2262 . . . . 5  |-  ( a  =  M  ->  (
( G `  a
)  e.  S  <->  ( G `  M )  e.  S
) )
4528ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  A. a  e.  ( ZZ>= `  M )
( G `  a
)  e.  S )
466ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  M  e.  ZZ )
47 uzid 9606 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
4846, 47syl 14 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  M  e.  ( ZZ>= `  M )
)
4944, 45, 48rspcdva 2869 . . . 4  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  ( G `  M )  e.  S )
50 eluzelz 9601 . . . . 5  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
51 zdcle 9393 . . . . 5  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  -> DECID  x  <_  N )
5250, 8, 51syl2anr 290 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  -> DECID  x  <_  N )
5342, 49, 52ifcldadc 3586 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  if (
x  <_  N , 
( G `  ( Q `  x )
) ,  ( G `
 M ) )  e.  S )
5420, 53fvmpt2d 5644 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ Q  /  f ]_ P `  x )  =  if ( x  <_  N ,  ( G `  ( Q `  x ) ) ,  ( G `
 M ) ) )
5554, 53eqeltrd 2270 1  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ Q  /  f ]_ P `  x )  e.  S
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   [_csb 3080   ifcif 3557   class class class wbr 4029    |-> cmpt 4090   `'ccnv 4658   -->wf 5250   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918   Fincfn 6794   1c1 7873    <_ cle 8055    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  seq3f1olemqsumkj  10582  seq3f1olemqsumk  10583  seq3f1olemqsum  10584
  Copyright terms: Public domain W3C validator