ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqpcl Unicode version

Theorem iseqf1olemqpcl 10513
Description: Lemma for seq3f1o 10521. A closure lemma involving  Q and  P. (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
iseqf1olemjpcl.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemjpcl.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
iseqf1olemqpcl  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ Q  /  f ]_ P `  x )  e.  S
)
Distinct variable groups:    x, G, f   
x, J, f    u, J    u, K    x, K    x, M, f    u, M   
f, N, x    u, N    x, Q, f    x, S    ph, u    ph, x
Allowed substitution hints:    ph( f)    P( x, u, f)    Q( u)    S( u, f)    G( u)    K( f)

Proof of Theorem iseqf1olemqpcl
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemjpcl.p . . . . 5  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
21csbeq2i 3098 . . . 4  |-  [_ Q  /  f ]_ P  =  [_ Q  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
3 iseqf1olemqf.q . . . . . 6  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
4 iseqf1olemqf.k . . . . . . . . 9  |-  ( ph  ->  K  e.  ( M ... N ) )
5 elfzel1 10041 . . . . . . . . 9  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
64, 5syl 14 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
7 elfzel2 10040 . . . . . . . . 9  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
84, 7syl 14 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
96, 8fzfigd 10448 . . . . . . 7  |-  ( ph  ->  ( M ... N
)  e.  Fin )
10 mptexg 5756 . . . . . . 7  |-  ( ( M ... N )  e.  Fin  ->  (
u  e.  ( M ... N )  |->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  e. 
_V )
119, 10syl 14 . . . . . 6  |-  ( ph  ->  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )  e. 
_V )
123, 11eqeltrid 2275 . . . . 5  |-  ( ph  ->  Q  e.  _V )
13 nfcvd 2332 . . . . . 6  |-  ( Q  e.  _V  ->  F/_ f
( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( Q `  x ) ) ,  ( G `
 M ) ) ) )
14 fveq1 5528 . . . . . . . . 9  |-  ( f  =  Q  ->  (
f `  x )  =  ( Q `  x ) )
1514fveq2d 5533 . . . . . . . 8  |-  ( f  =  Q  ->  ( G `  ( f `  x ) )  =  ( G `  ( Q `  x )
) )
1615ifeq1d 3565 . . . . . . 7  |-  ( f  =  Q  ->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( Q `
 x ) ) ,  ( G `  M ) ) )
1716mpteq2dv 4108 . . . . . 6  |-  ( f  =  Q  ->  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( Q `
 x ) ) ,  ( G `  M ) ) ) )
1813, 17csbiegf 3114 . . . . 5  |-  ( Q  e.  _V  ->  [_ Q  /  f ]_ (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( Q `
 x ) ) ,  ( G `  M ) ) ) )
1912, 18syl 14 . . . 4  |-  ( ph  ->  [_ Q  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( Q `  x )
) ,  ( G `
 M ) ) ) )
202, 19eqtrid 2233 . . 3  |-  ( ph  ->  [_ Q  /  f ]_ P  =  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( Q `  x )
) ,  ( G `
 M ) ) ) )
21 fveq2 5529 . . . . . 6  |-  ( a  =  ( Q `  x )  ->  ( G `  a )  =  ( G `  ( Q `  x ) ) )
2221eleq1d 2257 . . . . 5  |-  ( a  =  ( Q `  x )  ->  (
( G `  a
)  e.  S  <->  ( G `  ( Q `  x
) )  e.  S
) )
23 iseqf1olemjpcl.g . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
2423ralrimiva 2562 . . . . . . 7  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
25 fveq2 5529 . . . . . . . . 9  |-  ( x  =  a  ->  ( G `  x )  =  ( G `  a ) )
2625eleq1d 2257 . . . . . . . 8  |-  ( x  =  a  ->  (
( G `  x
)  e.  S  <->  ( G `  a )  e.  S
) )
2726cbvralv 2717 . . . . . . 7  |-  ( A. x  e.  ( ZZ>= `  M ) ( G `
 x )  e.  S  <->  A. a  e.  (
ZZ>= `  M ) ( G `  a )  e.  S )
2824, 27sylib 122 . . . . . 6  |-  ( ph  ->  A. a  e.  (
ZZ>= `  M ) ( G `  a )  e.  S )
2928ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  A. a  e.  ( ZZ>= `  M )
( G `  a
)  e.  S )
30 iseqf1olemqf.j . . . . . . . . 9  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
314, 30, 3iseqf1olemqf 10508 . . . . . . . 8  |-  ( ph  ->  Q : ( M ... N ) --> ( M ... N ) )
3231ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  Q :
( M ... N
) --> ( M ... N ) )
33 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  <_  N )
34 simplr 528 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ( ZZ>= `  M )
)
358ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  N  e.  ZZ )
36 elfz5 10034 . . . . . . . . 9  |-  ( ( x  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  (
x  e.  ( M ... N )  <->  x  <_  N ) )
3734, 35, 36syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( x  e.  ( M ... N
)  <->  x  <_  N ) )
3833, 37mpbird 167 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  x  e.  ( M ... N ) )
3932, 38ffvelcdmd 5667 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( Q `  x )  e.  ( M ... N ) )
40 elfzuz 10038 . . . . . 6  |-  ( ( Q `  x )  e.  ( M ... N )  ->  ( Q `  x )  e.  ( ZZ>= `  M )
)
4139, 40syl 14 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( Q `  x )  e.  (
ZZ>= `  M ) )
4222, 29, 41rspcdva 2860 . . . 4  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  x  <_  N )  ->  ( G `  ( Q `  x
) )  e.  S
)
43 fveq2 5529 . . . . . 6  |-  ( a  =  M  ->  ( G `  a )  =  ( G `  M ) )
4443eleq1d 2257 . . . . 5  |-  ( a  =  M  ->  (
( G `  a
)  e.  S  <->  ( G `  M )  e.  S
) )
4528ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  A. a  e.  ( ZZ>= `  M )
( G `  a
)  e.  S )
466ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  M  e.  ZZ )
47 uzid 9559 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
4846, 47syl 14 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  M  e.  ( ZZ>= `  M )
)
4944, 45, 48rspcdva 2860 . . . 4  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  M )
)  /\  -.  x  <_  N )  ->  ( G `  M )  e.  S )
50 eluzelz 9554 . . . . 5  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
51 zdcle 9346 . . . . 5  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  -> DECID  x  <_  N )
5250, 8, 51syl2anr 290 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  -> DECID  x  <_  N )
5342, 49, 52ifcldadc 3577 . . 3  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  if (
x  <_  N , 
( G `  ( Q `  x )
) ,  ( G `
 M ) )  e.  S )
5420, 53fvmpt2d 5617 . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ Q  /  f ]_ P `  x )  =  if ( x  <_  N ,  ( G `  ( Q `  x ) ) ,  ( G `
 M ) ) )
5554, 53eqeltrd 2265 1  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( [_ Q  /  f ]_ P `  x )  e.  S
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1363    e. wcel 2159   A.wral 2467   _Vcvv 2751   [_csb 3071   ifcif 3548   class class class wbr 4017    |-> cmpt 4078   `'ccnv 4639   -->wf 5226   -1-1-onto->wf1o 5229   ` cfv 5230  (class class class)co 5890   Fincfn 6757   1c1 7829    <_ cle 8010    - cmin 8145   ZZcz 9270   ZZ>=cuz 9545   ...cfz 10025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-addcom 7928  ax-addass 7930  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-0id 7936  ax-rnegex 7937  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-apti 7943  ax-pre-ltadd 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-if 3549  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-id 4307  df-iord 4380  df-on 4382  df-ilim 4383  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-frec 6409  df-1o 6434  df-er 6552  df-en 6758  df-fin 6760  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-inn 8937  df-n0 9194  df-z 9271  df-uz 9546  df-fz 10026
This theorem is referenced by:  seq3f1olemqsumkj  10515  seq3f1olemqsumk  10516  seq3f1olemqsum  10517
  Copyright terms: Public domain W3C validator