ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemfvp Unicode version

Theorem iseqf1olemfvp 10391
Description: Lemma for seq3f1o 10398. (Contributed by Jim Kingdon, 30-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemfvp.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemfvp.t  |-  ( ph  ->  T : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemfvp.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemfvp.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemfvp.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
iseqf1olemfvp  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  ( G `
 ( T `  A ) ) )
Distinct variable groups:    x, A    f, G, x    x, K    f, M, x    f, N, x   
x, S    T, f, x    ph, x
Allowed substitution hints:    ph( f)    A( f)    P( x, f)    S( f)    K( f)

Proof of Theorem iseqf1olemfvp
StepHypRef Expression
1 iseqf1olemfvp.p . . . . 5  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
21csbeq2i 3058 . . . 4  |-  [_ T  /  f ]_ P  =  [_ T  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
3 iseqf1olemfvp.t . . . . . . 7  |-  ( ph  ->  T : ( M ... N ) -1-1-onto-> ( M ... N ) )
4 f1of 5413 . . . . . . 7  |-  ( T : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  T :
( M ... N
) --> ( M ... N ) )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  T : ( M ... N ) --> ( M ... N ) )
6 iseqf1olemfvp.k . . . . . . . 8  |-  ( ph  ->  K  e.  ( M ... N ) )
7 elfzel1 9922 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
86, 7syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
9 elfzel2 9921 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
106, 9syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
118, 10fzfigd 10325 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
12 fex 5693 . . . . . 6  |-  ( ( T : ( M ... N ) --> ( M ... N )  /\  ( M ... N )  e.  Fin )  ->  T  e.  _V )
135, 11, 12syl2anc 409 . . . . 5  |-  ( ph  ->  T  e.  _V )
14 nfcvd 2300 . . . . . 6  |-  ( T  e.  _V  ->  F/_ f
( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( T `  x ) ) ,  ( G `
 M ) ) ) )
15 fveq1 5466 . . . . . . . . 9  |-  ( f  =  T  ->  (
f `  x )  =  ( T `  x ) )
1615fveq2d 5471 . . . . . . . 8  |-  ( f  =  T  ->  ( G `  ( f `  x ) )  =  ( G `  ( T `  x )
) )
1716ifeq1d 3522 . . . . . . 7  |-  ( f  =  T  ->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) )
1817mpteq2dv 4055 . . . . . 6  |-  ( f  =  T  ->  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) ) )
1914, 18csbiegf 3074 . . . . 5  |-  ( T  e.  _V  ->  [_ T  /  f ]_ (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) ) )
2013, 19syl 14 . . . 4  |-  ( ph  ->  [_ T  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) ) ) )
212, 20syl5eq 2202 . . 3  |-  ( ph  ->  [_ T  /  f ]_ P  =  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) ) ) )
22 simpr 109 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
2322breq1d 3975 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
x  <_  N  <->  A  <_  N ) )
2422fveq2d 5471 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( T `  x )  =  ( T `  A ) )
2524fveq2d 5471 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( G `  ( T `  x ) )  =  ( G `  ( T `  A )
) )
2623, 25ifbieq1d 3527 . . 3  |-  ( (
ph  /\  x  =  A )  ->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) )  =  if ( A  <_  N ,  ( G `  ( T `
 A ) ) ,  ( G `  M ) ) )
27 iseqf1olemfvp.a . . . 4  |-  ( ph  ->  A  e.  ( M ... N ) )
28 elfzuz 9919 . . . 4  |-  ( A  e.  ( M ... N )  ->  A  e.  ( ZZ>= `  M )
)
2927, 28syl 14 . . 3  |-  ( ph  ->  A  e.  ( ZZ>= `  M ) )
30 elfzle2 9925 . . . . . 6  |-  ( A  e.  ( M ... N )  ->  A  <_  N )
3127, 30syl 14 . . . . 5  |-  ( ph  ->  A  <_  N )
3231iftrued 3512 . . . 4  |-  ( ph  ->  if ( A  <_  N ,  ( G `  ( T `  A
) ) ,  ( G `  M ) )  =  ( G `
 ( T `  A ) ) )
33 fveq2 5467 . . . . . 6  |-  ( x  =  ( T `  A )  ->  ( G `  x )  =  ( G `  ( T `  A ) ) )
3433eleq1d 2226 . . . . 5  |-  ( x  =  ( T `  A )  ->  (
( G `  x
)  e.  S  <->  ( G `  ( T `  A
) )  e.  S
) )
35 iseqf1olemfvp.g . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
3635ralrimiva 2530 . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
375, 27ffvelrnd 5602 . . . . . 6  |-  ( ph  ->  ( T `  A
)  e.  ( M ... N ) )
38 elfzuz 9919 . . . . . 6  |-  ( ( T `  A )  e.  ( M ... N )  ->  ( T `  A )  e.  ( ZZ>= `  M )
)
3937, 38syl 14 . . . . 5  |-  ( ph  ->  ( T `  A
)  e.  ( ZZ>= `  M ) )
4034, 36, 39rspcdva 2821 . . . 4  |-  ( ph  ->  ( G `  ( T `  A )
)  e.  S )
4132, 40eqeltrd 2234 . . 3  |-  ( ph  ->  if ( A  <_  N ,  ( G `  ( T `  A
) ) ,  ( G `  M ) )  e.  S )
4221, 26, 29, 41fvmptd 5548 . 2  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  if ( A  <_  N , 
( G `  ( T `  A )
) ,  ( G `
 M ) ) )
4342, 32eqtrd 2190 1  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  ( G `
 ( T `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   _Vcvv 2712   [_csb 3031   ifcif 3505   class class class wbr 3965    |-> cmpt 4025   -->wf 5165   -1-1-onto->wf1o 5168   ` cfv 5169  (class class class)co 5821   Fincfn 6682    <_ cle 7908   ZZcz 9162   ZZ>=cuz 9434   ...cfz 9907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7818  ax-resscn 7819  ax-1cn 7820  ax-1re 7821  ax-icn 7822  ax-addcl 7823  ax-addrcl 7824  ax-mulcl 7825  ax-addcom 7827  ax-addass 7829  ax-distr 7831  ax-i2m1 7832  ax-0lt1 7833  ax-0id 7835  ax-rnegex 7836  ax-cnre 7838  ax-pre-ltirr 7839  ax-pre-ltwlin 7840  ax-pre-lttrn 7841  ax-pre-apti 7842  ax-pre-ltadd 7843
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-1o 6360  df-er 6477  df-en 6683  df-fin 6685  df-pnf 7909  df-mnf 7910  df-xr 7911  df-ltxr 7912  df-le 7913  df-sub 8043  df-neg 8044  df-inn 8829  df-n0 9086  df-z 9163  df-uz 9435  df-fz 9908
This theorem is referenced by:  seq3f1olemqsumkj  10392  seq3f1olemqsumk  10393
  Copyright terms: Public domain W3C validator