ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemfvp Unicode version

Theorem iseqf1olemfvp 10432
Description: Lemma for seq3f1o 10439. (Contributed by Jim Kingdon, 30-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemfvp.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemfvp.t  |-  ( ph  ->  T : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemfvp.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemfvp.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemfvp.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
iseqf1olemfvp  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  ( G `
 ( T `  A ) ) )
Distinct variable groups:    x, A    f, G, x    x, K    f, M, x    f, N, x   
x, S    T, f, x    ph, x
Allowed substitution hints:    ph( f)    A( f)    P( x, f)    S( f)    K( f)

Proof of Theorem iseqf1olemfvp
StepHypRef Expression
1 iseqf1olemfvp.p . . . . 5  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
21csbeq2i 3072 . . . 4  |-  [_ T  /  f ]_ P  =  [_ T  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
3 iseqf1olemfvp.t . . . . . . 7  |-  ( ph  ->  T : ( M ... N ) -1-1-onto-> ( M ... N ) )
4 f1of 5432 . . . . . . 7  |-  ( T : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  T :
( M ... N
) --> ( M ... N ) )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  T : ( M ... N ) --> ( M ... N ) )
6 iseqf1olemfvp.k . . . . . . . 8  |-  ( ph  ->  K  e.  ( M ... N ) )
7 elfzel1 9959 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
86, 7syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
9 elfzel2 9958 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
106, 9syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
118, 10fzfigd 10366 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
12 fex 5714 . . . . . 6  |-  ( ( T : ( M ... N ) --> ( M ... N )  /\  ( M ... N )  e.  Fin )  ->  T  e.  _V )
135, 11, 12syl2anc 409 . . . . 5  |-  ( ph  ->  T  e.  _V )
14 nfcvd 2309 . . . . . 6  |-  ( T  e.  _V  ->  F/_ f
( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( T `  x ) ) ,  ( G `
 M ) ) ) )
15 fveq1 5485 . . . . . . . . 9  |-  ( f  =  T  ->  (
f `  x )  =  ( T `  x ) )
1615fveq2d 5490 . . . . . . . 8  |-  ( f  =  T  ->  ( G `  ( f `  x ) )  =  ( G `  ( T `  x )
) )
1716ifeq1d 3537 . . . . . . 7  |-  ( f  =  T  ->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) )
1817mpteq2dv 4073 . . . . . 6  |-  ( f  =  T  ->  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) ) )
1914, 18csbiegf 3088 . . . . 5  |-  ( T  e.  _V  ->  [_ T  /  f ]_ (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) ) )
2013, 19syl 14 . . . 4  |-  ( ph  ->  [_ T  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) ) ) )
212, 20syl5eq 2211 . . 3  |-  ( ph  ->  [_ T  /  f ]_ P  =  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) ) ) )
22 simpr 109 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
2322breq1d 3992 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
x  <_  N  <->  A  <_  N ) )
2422fveq2d 5490 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( T `  x )  =  ( T `  A ) )
2524fveq2d 5490 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( G `  ( T `  x ) )  =  ( G `  ( T `  A )
) )
2623, 25ifbieq1d 3542 . . 3  |-  ( (
ph  /\  x  =  A )  ->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) )  =  if ( A  <_  N ,  ( G `  ( T `
 A ) ) ,  ( G `  M ) ) )
27 iseqf1olemfvp.a . . . 4  |-  ( ph  ->  A  e.  ( M ... N ) )
28 elfzuz 9956 . . . 4  |-  ( A  e.  ( M ... N )  ->  A  e.  ( ZZ>= `  M )
)
2927, 28syl 14 . . 3  |-  ( ph  ->  A  e.  ( ZZ>= `  M ) )
30 elfzle2 9963 . . . . . 6  |-  ( A  e.  ( M ... N )  ->  A  <_  N )
3127, 30syl 14 . . . . 5  |-  ( ph  ->  A  <_  N )
3231iftrued 3527 . . . 4  |-  ( ph  ->  if ( A  <_  N ,  ( G `  ( T `  A
) ) ,  ( G `  M ) )  =  ( G `
 ( T `  A ) ) )
33 fveq2 5486 . . . . . 6  |-  ( x  =  ( T `  A )  ->  ( G `  x )  =  ( G `  ( T `  A ) ) )
3433eleq1d 2235 . . . . 5  |-  ( x  =  ( T `  A )  ->  (
( G `  x
)  e.  S  <->  ( G `  ( T `  A
) )  e.  S
) )
35 iseqf1olemfvp.g . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
3635ralrimiva 2539 . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
375, 27ffvelrnd 5621 . . . . . 6  |-  ( ph  ->  ( T `  A
)  e.  ( M ... N ) )
38 elfzuz 9956 . . . . . 6  |-  ( ( T `  A )  e.  ( M ... N )  ->  ( T `  A )  e.  ( ZZ>= `  M )
)
3937, 38syl 14 . . . . 5  |-  ( ph  ->  ( T `  A
)  e.  ( ZZ>= `  M ) )
4034, 36, 39rspcdva 2835 . . . 4  |-  ( ph  ->  ( G `  ( T `  A )
)  e.  S )
4132, 40eqeltrd 2243 . . 3  |-  ( ph  ->  if ( A  <_  N ,  ( G `  ( T `  A
) ) ,  ( G `  M ) )  e.  S )
4221, 26, 29, 41fvmptd 5567 . 2  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  if ( A  <_  N , 
( G `  ( T `  A )
) ,  ( G `
 M ) ) )
4342, 32eqtrd 2198 1  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  ( G `
 ( T `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   [_csb 3045   ifcif 3520   class class class wbr 3982    |-> cmpt 4043   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842   Fincfn 6706    <_ cle 7934   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  seq3f1olemqsumkj  10433  seq3f1olemqsumk  10434
  Copyright terms: Public domain W3C validator