ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemfvp Unicode version

Theorem iseqf1olemfvp 10732
Description: Lemma for seq3f1o 10739. (Contributed by Jim Kingdon, 30-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemfvp.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemfvp.t  |-  ( ph  ->  T : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemfvp.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemfvp.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemfvp.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
iseqf1olemfvp  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  ( G `
 ( T `  A ) ) )
Distinct variable groups:    x, A    f, G, x    x, K    f, M, x    f, N, x   
x, S    T, f, x    ph, x
Allowed substitution hints:    ph( f)    A( f)    P( x, f)    S( f)    K( f)

Proof of Theorem iseqf1olemfvp
StepHypRef Expression
1 iseqf1olemfvp.p . . . . 5  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
21csbeq2i 3151 . . . 4  |-  [_ T  /  f ]_ P  =  [_ T  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
3 iseqf1olemfvp.t . . . . . . 7  |-  ( ph  ->  T : ( M ... N ) -1-1-onto-> ( M ... N ) )
4 f1of 5572 . . . . . . 7  |-  ( T : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  T :
( M ... N
) --> ( M ... N ) )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  T : ( M ... N ) --> ( M ... N ) )
6 iseqf1olemfvp.k . . . . . . . 8  |-  ( ph  ->  K  e.  ( M ... N ) )
7 elfzel1 10220 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
86, 7syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
9 elfzel2 10219 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
106, 9syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
118, 10fzfigd 10653 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
12 fex 5868 . . . . . 6  |-  ( ( T : ( M ... N ) --> ( M ... N )  /\  ( M ... N )  e.  Fin )  ->  T  e.  _V )
135, 11, 12syl2anc 411 . . . . 5  |-  ( ph  ->  T  e.  _V )
14 nfcvd 2373 . . . . . 6  |-  ( T  e.  _V  ->  F/_ f
( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( T `  x ) ) ,  ( G `
 M ) ) ) )
15 fveq1 5626 . . . . . . . . 9  |-  ( f  =  T  ->  (
f `  x )  =  ( T `  x ) )
1615fveq2d 5631 . . . . . . . 8  |-  ( f  =  T  ->  ( G `  ( f `  x ) )  =  ( G `  ( T `  x )
) )
1716ifeq1d 3620 . . . . . . 7  |-  ( f  =  T  ->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) )
1817mpteq2dv 4175 . . . . . 6  |-  ( f  =  T  ->  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) ) )
1914, 18csbiegf 3168 . . . . 5  |-  ( T  e.  _V  ->  [_ T  /  f ]_ (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) ) )
2013, 19syl 14 . . . 4  |-  ( ph  ->  [_ T  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) ) ) )
212, 20eqtrid 2274 . . 3  |-  ( ph  ->  [_ T  /  f ]_ P  =  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) ) ) )
22 simpr 110 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
2322breq1d 4093 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
x  <_  N  <->  A  <_  N ) )
2422fveq2d 5631 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( T `  x )  =  ( T `  A ) )
2524fveq2d 5631 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( G `  ( T `  x ) )  =  ( G `  ( T `  A )
) )
2623, 25ifbieq1d 3625 . . 3  |-  ( (
ph  /\  x  =  A )  ->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) )  =  if ( A  <_  N ,  ( G `  ( T `
 A ) ) ,  ( G `  M ) ) )
27 iseqf1olemfvp.a . . . 4  |-  ( ph  ->  A  e.  ( M ... N ) )
28 elfzuz 10217 . . . 4  |-  ( A  e.  ( M ... N )  ->  A  e.  ( ZZ>= `  M )
)
2927, 28syl 14 . . 3  |-  ( ph  ->  A  e.  ( ZZ>= `  M ) )
30 elfzle2 10224 . . . . . 6  |-  ( A  e.  ( M ... N )  ->  A  <_  N )
3127, 30syl 14 . . . . 5  |-  ( ph  ->  A  <_  N )
3231iftrued 3609 . . . 4  |-  ( ph  ->  if ( A  <_  N ,  ( G `  ( T `  A
) ) ,  ( G `  M ) )  =  ( G `
 ( T `  A ) ) )
33 fveq2 5627 . . . . . 6  |-  ( x  =  ( T `  A )  ->  ( G `  x )  =  ( G `  ( T `  A ) ) )
3433eleq1d 2298 . . . . 5  |-  ( x  =  ( T `  A )  ->  (
( G `  x
)  e.  S  <->  ( G `  ( T `  A
) )  e.  S
) )
35 iseqf1olemfvp.g . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
3635ralrimiva 2603 . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
375, 27ffvelcdmd 5771 . . . . . 6  |-  ( ph  ->  ( T `  A
)  e.  ( M ... N ) )
38 elfzuz 10217 . . . . . 6  |-  ( ( T `  A )  e.  ( M ... N )  ->  ( T `  A )  e.  ( ZZ>= `  M )
)
3937, 38syl 14 . . . . 5  |-  ( ph  ->  ( T `  A
)  e.  ( ZZ>= `  M ) )
4034, 36, 39rspcdva 2912 . . . 4  |-  ( ph  ->  ( G `  ( T `  A )
)  e.  S )
4132, 40eqeltrd 2306 . . 3  |-  ( ph  ->  if ( A  <_  N ,  ( G `  ( T `  A
) ) ,  ( G `  M ) )  e.  S )
4221, 26, 29, 41fvmptd 5715 . 2  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  if ( A  <_  N , 
( G `  ( T `  A )
) ,  ( G `
 M ) ) )
4342, 32eqtrd 2262 1  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  ( G `
 ( T `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   [_csb 3124   ifcif 3602   class class class wbr 4083    |-> cmpt 4145   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001   Fincfn 6887    <_ cle 8182   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-en 6888  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  seq3f1olemqsumkj  10733  seq3f1olemqsumk  10734
  Copyright terms: Public domain W3C validator