ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemfvp Unicode version

Theorem iseqf1olemfvp 10619
Description: Lemma for seq3f1o 10626. (Contributed by Jim Kingdon, 30-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemfvp.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemfvp.t  |-  ( ph  ->  T : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemfvp.a  |-  ( ph  ->  A  e.  ( M ... N ) )
iseqf1olemfvp.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1olemfvp.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
iseqf1olemfvp  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  ( G `
 ( T `  A ) ) )
Distinct variable groups:    x, A    f, G, x    x, K    f, M, x    f, N, x   
x, S    T, f, x    ph, x
Allowed substitution hints:    ph( f)    A( f)    P( x, f)    S( f)    K( f)

Proof of Theorem iseqf1olemfvp
StepHypRef Expression
1 iseqf1olemfvp.p . . . . 5  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
21csbeq2i 3111 . . . 4  |-  [_ T  /  f ]_ P  =  [_ T  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
3 iseqf1olemfvp.t . . . . . . 7  |-  ( ph  ->  T : ( M ... N ) -1-1-onto-> ( M ... N ) )
4 f1of 5507 . . . . . . 7  |-  ( T : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  T :
( M ... N
) --> ( M ... N ) )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  T : ( M ... N ) --> ( M ... N ) )
6 iseqf1olemfvp.k . . . . . . . 8  |-  ( ph  ->  K  e.  ( M ... N ) )
7 elfzel1 10116 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
86, 7syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
9 elfzel2 10115 . . . . . . . 8  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
106, 9syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
118, 10fzfigd 10540 . . . . . 6  |-  ( ph  ->  ( M ... N
)  e.  Fin )
12 fex 5794 . . . . . 6  |-  ( ( T : ( M ... N ) --> ( M ... N )  /\  ( M ... N )  e.  Fin )  ->  T  e.  _V )
135, 11, 12syl2anc 411 . . . . 5  |-  ( ph  ->  T  e.  _V )
14 nfcvd 2340 . . . . . 6  |-  ( T  e.  _V  ->  F/_ f
( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( T `  x ) ) ,  ( G `
 M ) ) ) )
15 fveq1 5560 . . . . . . . . 9  |-  ( f  =  T  ->  (
f `  x )  =  ( T `  x ) )
1615fveq2d 5565 . . . . . . . 8  |-  ( f  =  T  ->  ( G `  ( f `  x ) )  =  ( G `  ( T `  x )
) )
1716ifeq1d 3579 . . . . . . 7  |-  ( f  =  T  ->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) )
1817mpteq2dv 4125 . . . . . 6  |-  ( f  =  T  ->  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) ) )
1914, 18csbiegf 3128 . . . . 5  |-  ( T  e.  _V  ->  [_ T  /  f ]_ (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( T `
 x ) ) ,  ( G `  M ) ) ) )
2013, 19syl 14 . . . 4  |-  ( ph  ->  [_ T  /  f ]_ ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )  =  ( x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) ) ) )
212, 20eqtrid 2241 . . 3  |-  ( ph  ->  [_ T  /  f ]_ P  =  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) ) ) )
22 simpr 110 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  x  =  A )
2322breq1d 4044 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  (
x  <_  N  <->  A  <_  N ) )
2422fveq2d 5565 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( T `  x )  =  ( T `  A ) )
2524fveq2d 5565 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  ( G `  ( T `  x ) )  =  ( G `  ( T `  A )
) )
2623, 25ifbieq1d 3584 . . 3  |-  ( (
ph  /\  x  =  A )  ->  if ( x  <_  N , 
( G `  ( T `  x )
) ,  ( G `
 M ) )  =  if ( A  <_  N ,  ( G `  ( T `
 A ) ) ,  ( G `  M ) ) )
27 iseqf1olemfvp.a . . . 4  |-  ( ph  ->  A  e.  ( M ... N ) )
28 elfzuz 10113 . . . 4  |-  ( A  e.  ( M ... N )  ->  A  e.  ( ZZ>= `  M )
)
2927, 28syl 14 . . 3  |-  ( ph  ->  A  e.  ( ZZ>= `  M ) )
30 elfzle2 10120 . . . . . 6  |-  ( A  e.  ( M ... N )  ->  A  <_  N )
3127, 30syl 14 . . . . 5  |-  ( ph  ->  A  <_  N )
3231iftrued 3569 . . . 4  |-  ( ph  ->  if ( A  <_  N ,  ( G `  ( T `  A
) ) ,  ( G `  M ) )  =  ( G `
 ( T `  A ) ) )
33 fveq2 5561 . . . . . 6  |-  ( x  =  ( T `  A )  ->  ( G `  x )  =  ( G `  ( T `  A ) ) )
3433eleq1d 2265 . . . . 5  |-  ( x  =  ( T `  A )  ->  (
( G `  x
)  e.  S  <->  ( G `  ( T `  A
) )  e.  S
) )
35 iseqf1olemfvp.g . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
3635ralrimiva 2570 . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M ) ( G `  x )  e.  S )
375, 27ffvelcdmd 5701 . . . . . 6  |-  ( ph  ->  ( T `  A
)  e.  ( M ... N ) )
38 elfzuz 10113 . . . . . 6  |-  ( ( T `  A )  e.  ( M ... N )  ->  ( T `  A )  e.  ( ZZ>= `  M )
)
3937, 38syl 14 . . . . 5  |-  ( ph  ->  ( T `  A
)  e.  ( ZZ>= `  M ) )
4034, 36, 39rspcdva 2873 . . . 4  |-  ( ph  ->  ( G `  ( T `  A )
)  e.  S )
4132, 40eqeltrd 2273 . . 3  |-  ( ph  ->  if ( A  <_  N ,  ( G `  ( T `  A
) ) ,  ( G `  M ) )  e.  S )
4221, 26, 29, 41fvmptd 5645 . 2  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  if ( A  <_  N , 
( G `  ( T `  A )
) ,  ( G `
 M ) ) )
4342, 32eqtrd 2229 1  |-  ( ph  ->  ( [_ T  / 
f ]_ P `  A
)  =  ( G `
 ( T `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   [_csb 3084   ifcif 3562   class class class wbr 4034    |-> cmpt 4095   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925   Fincfn 6808    <_ cle 8079   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  seq3f1olemqsumkj  10620  seq3f1olemqsumk  10621
  Copyright terms: Public domain W3C validator