ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodmul Unicode version

Theorem fprodmul 11554
Description: The product of two finite products. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypotheses
Ref Expression
fprodmul.1  |-  ( ph  ->  A  e.  Fin )
fprodmul.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprodmul.3  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
Assertion
Ref Expression
fprodmul  |-  ( ph  ->  prod_ k  e.  A  ( B  x.  C
)  =  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fprodmul
Dummy variables  p  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1t1e1 9030 . . . . 5  |-  ( 1  x.  1 )  =  1
2 prod0 11548 . . . . . 6  |-  prod_ k  e.  (/)  B  =  1
3 prod0 11548 . . . . . 6  |-  prod_ k  e.  (/)  C  =  1
42, 3oveq12i 5865 . . . . 5  |-  ( prod_
k  e.  (/)  B  x.  prod_ k  e.  (/)  C )  =  ( 1  x.  1 )
5 prod0 11548 . . . . 5  |-  prod_ k  e.  (/)  ( B  x.  C )  =  1
61, 4, 53eqtr4ri 2202 . . . 4  |-  prod_ k  e.  (/)  ( B  x.  C )  =  (
prod_ k  e.  (/)  B  x.  prod_ k  e.  (/)  C )
7 prodeq1 11516 . . . 4  |-  ( A  =  (/)  ->  prod_ k  e.  A  ( B  x.  C )  =  prod_ k  e.  (/)  ( B  x.  C ) )
8 prodeq1 11516 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  B  =  prod_ k  e.  (/)  B )
9 prodeq1 11516 . . . . 5  |-  ( A  =  (/)  ->  prod_ k  e.  A  C  =  prod_ k  e.  (/)  C )
108, 9oveq12d 5871 . . . 4  |-  ( A  =  (/)  ->  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C )  =  (
prod_ k  e.  (/)  B  x.  prod_ k  e.  (/)  C ) )
116, 7, 103eqtr4a 2229 . . 3  |-  ( A  =  (/)  ->  prod_ k  e.  A  ( B  x.  C )  =  (
prod_ k  e.  A  B  x.  prod_ k  e.  A  C ) )
1211a1i 9 . 2  |-  ( ph  ->  ( A  =  (/)  ->  prod_ k  e.  A  ( B  x.  C
)  =  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C ) ) )
13 simprl 526 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( `  A )  e.  NN )
14 nnuz 9522 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1513, 14eleqtrdi 2263 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( `  A )  e.  ( ZZ>= `  1 )
)
16 elnnuz 9523 . . . . . . . . . . . 12  |-  ( p  e.  NN  <->  p  e.  ( ZZ>= `  1 )
)
1716biimpri 132 . . . . . . . . . . 11  |-  ( p  e.  ( ZZ>= `  1
)  ->  p  e.  NN )
1817adantl 275 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  p  e.  NN )
19 fprodmul.2 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
2019fmpttd 5651 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
2120adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  B ) : A --> CC )
22 f1of 5442 . . . . . . . . . . . . . . 15  |-  ( f : ( 1 ... ( `  A )
)
-1-1-onto-> A  ->  f : ( 1 ... ( `  A
) ) --> A )
2322ad2antll 488 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( `  A
) ) --> A )
24 fco 5363 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( `  A
) ) --> A )  ->  ( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( `  A ) ) --> CC )
2521, 23, 24syl2anc 409 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( `  A
) ) --> CC )
2625ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  B )  o.  f ) : ( 1 ... ( `  A
) ) --> CC )
27 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  p  <_  ( `  A )
)
28 simplr 525 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  p  e.  ( ZZ>= ` 
1 ) )
2913ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( `  A )  e.  NN )
3029nnzd 9333 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( `  A )  e.  ZZ )
31 elfz5 9973 . . . . . . . . . . . . . 14  |-  ( ( p  e.  ( ZZ>= ` 
1 )  /\  ( `  A )  e.  ZZ )  ->  ( p  e.  ( 1 ... ( `  A ) )  <->  p  <_  ( `  A ) ) )
3228, 30, 31syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( p  e.  ( 1 ... ( `  A
) )  <->  p  <_  ( `  A ) ) )
3327, 32mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  p  e.  ( 1 ... ( `  A
) ) )
3426, 33ffvelrnd 5632 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  p )  e.  CC )
35 1cnd 7936 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  -.  p  <_  ( `  A )
)  ->  1  e.  CC )
3618nnzd 9333 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  p  e.  ZZ )
3713adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( `  A
)  e.  NN )
3837nnzd 9333 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( `  A
)  e.  ZZ )
39 zdcle 9288 . . . . . . . . . . . 12  |-  ( ( p  e.  ZZ  /\  ( `  A )  e.  ZZ )  -> DECID  p  <_  ( `  A
) )
4036, 38, 39syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  -> DECID  p  <_  ( `  A
) )
4134, 35, 40ifcldadc 3555 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  if (
p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  p ) ,  1 )  e.  CC )
42 breq1 3992 . . . . . . . . . . . 12  |-  ( n  =  p  ->  (
n  <_  ( `  A
)  <->  p  <_  ( `  A
) ) )
43 fveq2 5496 . . . . . . . . . . . 12  |-  ( n  =  p  ->  (
( ( k  e.  A  |->  B )  o.  f ) `  n
)  =  ( ( ( k  e.  A  |->  B )  o.  f
) `  p )
)
4442, 43ifbieq1d 3548 . . . . . . . . . . 11  |-  ( n  =  p  ->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  1 )  =  if ( p  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  p ) ,  1 ) )
45 eqid 2170 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  1 ) )
4644, 45fvmptg 5572 . . . . . . . . . 10  |-  ( ( p  e.  NN  /\  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  p
) ,  1 )  e.  CC )  -> 
( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  1 ) ) `  p )  =  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  p
) ,  1 ) )
4718, 41, 46syl2anc 409 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  1 ) ) `  p )  =  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 p ) ,  1 ) )
4847, 41eqeltrd 2247 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  1 ) ) `  p )  e.  CC )
49 fprodmul.3 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
5049fmpttd 5651 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( k  e.  A  |->  C ) : A --> CC )
5150adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  C ) : A --> CC )
52 fco 5363 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  A  |->  C ) : A --> CC  /\  f : ( 1 ... ( `  A
) ) --> A )  ->  ( ( k  e.  A  |->  C )  o.  f ) : ( 1 ... ( `  A ) ) --> CC )
5351, 23, 52syl2anc 409 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( ( k  e.  A  |->  C )  o.  f ) : ( 1 ... ( `  A
) ) --> CC )
5453ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  C )  o.  f ) : ( 1 ... ( `  A
) ) --> CC )
5554, 33ffvelrnd 5632 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  p )  e.  CC )
5655, 35, 40ifcldadc 3555 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  if (
p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  p ) ,  1 )  e.  CC )
57 fveq2 5496 . . . . . . . . . . . 12  |-  ( n  =  p  ->  (
( ( k  e.  A  |->  C )  o.  f ) `  n
)  =  ( ( ( k  e.  A  |->  C )  o.  f
) `  p )
)
5842, 57ifbieq1d 3548 . . . . . . . . . . 11  |-  ( n  =  p  ->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  n ) ,  1 )  =  if ( p  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  p ) ,  1 ) )
59 eqid 2170 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  n ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `
 n ) ,  1 ) )
6058, 59fvmptg 5572 . . . . . . . . . 10  |-  ( ( p  e.  NN  /\  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  p
) ,  1 )  e.  CC )  -> 
( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `
 n ) ,  1 ) ) `  p )  =  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  p
) ,  1 ) )
6118, 56, 60syl2anc 409 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ,  1 ) ) `  p )  =  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `
 p ) ,  1 ) )
6261, 56eqeltrd 2247 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ,  1 ) ) `  p )  e.  CC )
6323ad2antrr 485 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
f : ( 1 ... ( `  A
) ) --> A )
6463, 33ffvelrnd 5632 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( f `  p
)  e.  A )
65 csbov12g 5892 . . . . . . . . . . . . . 14  |-  ( ( f `  p )  e.  A  ->  [_ (
f `  p )  /  k ]_ ( B  x.  C )  =  ( [_ (
f `  p )  /  k ]_ B  x.  [_ ( f `  p )  /  k ]_ C ) )
6664, 65syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  [_ ( f `  p
)  /  k ]_ ( B  x.  C
)  =  ( [_ ( f `  p
)  /  k ]_ B  x.  [_ ( f `
 p )  / 
k ]_ C ) )
6719, 49mulcld 7940 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  A )  ->  ( B  x.  C )  e.  CC )
6867ralrimiva 2543 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. k  e.  A  ( B  x.  C
)  e.  CC )
6968ad3antrrr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  A. k  e.  A  ( B  x.  C
)  e.  CC )
70 nfcsb1v 3082 . . . . . . . . . . . . . . . . 17  |-  F/_ k [_ ( f `  p
)  /  k ]_ ( B  x.  C
)
7170nfel1 2323 . . . . . . . . . . . . . . . 16  |-  F/ k
[_ ( f `  p )  /  k ]_ ( B  x.  C
)  e.  CC
72 csbeq1a 3058 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( f `  p )  ->  ( B  x.  C )  =  [_ ( f `  p )  /  k ]_ ( B  x.  C
) )
7372eleq1d 2239 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( f `  p )  ->  (
( B  x.  C
)  e.  CC  <->  [_ ( f `
 p )  / 
k ]_ ( B  x.  C )  e.  CC ) )
7471, 73rspc 2828 . . . . . . . . . . . . . . 15  |-  ( ( f `  p )  e.  A  ->  ( A. k  e.  A  ( B  x.  C
)  e.  CC  ->  [_ ( f `  p
)  /  k ]_ ( B  x.  C
)  e.  CC ) )
7564, 69, 74sylc 62 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  [_ ( f `  p
)  /  k ]_ ( B  x.  C
)  e.  CC )
76 eqid 2170 . . . . . . . . . . . . . . 15  |-  ( k  e.  A  |->  ( B  x.  C ) )  =  ( k  e.  A  |->  ( B  x.  C ) )
7776fvmpts 5574 . . . . . . . . . . . . . 14  |-  ( ( ( f `  p
)  e.  A  /\  [_ ( f `  p
)  /  k ]_ ( B  x.  C
)  e.  CC )  ->  ( ( k  e.  A  |->  ( B  x.  C ) ) `
 ( f `  p ) )  = 
[_ ( f `  p )  /  k ]_ ( B  x.  C
) )
7864, 75, 77syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  ( B  x.  C ) ) `  ( f `  p
) )  =  [_ ( f `  p
)  /  k ]_ ( B  x.  C
) )
7919ralrimiva 2543 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
8079ad3antrrr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  A. k  e.  A  B  e.  CC )
81 nfcsb1v 3082 . . . . . . . . . . . . . . . . . 18  |-  F/_ k [_ ( f `  p
)  /  k ]_ B
8281nfel1 2323 . . . . . . . . . . . . . . . . 17  |-  F/ k
[_ ( f `  p )  /  k ]_ B  e.  CC
83 csbeq1a 3058 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( f `  p )  ->  B  =  [_ ( f `  p )  /  k ]_ B )
8483eleq1d 2239 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( f `  p )  ->  ( B  e.  CC  <->  [_ ( f `
 p )  / 
k ]_ B  e.  CC ) )
8582, 84rspc 2828 . . . . . . . . . . . . . . . 16  |-  ( ( f `  p )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( f `  p
)  /  k ]_ B  e.  CC )
)
8664, 80, 85sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  [_ ( f `  p
)  /  k ]_ B  e.  CC )
87 eqid 2170 . . . . . . . . . . . . . . . 16  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
8887fvmpts 5574 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  p
)  e.  A  /\  [_ ( f `  p
)  /  k ]_ B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  ( f `  p
) )  =  [_ ( f `  p
)  /  k ]_ B )
8964, 86, 88syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  B ) `  ( f `  p
) )  =  [_ ( f `  p
)  /  k ]_ B )
9049ralrimiva 2543 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
9190ad3antrrr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  A. k  e.  A  C  e.  CC )
92 nfcsb1v 3082 . . . . . . . . . . . . . . . . . 18  |-  F/_ k [_ ( f `  p
)  /  k ]_ C
9392nfel1 2323 . . . . . . . . . . . . . . . . 17  |-  F/ k
[_ ( f `  p )  /  k ]_ C  e.  CC
94 csbeq1a 3058 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( f `  p )  ->  C  =  [_ ( f `  p )  /  k ]_ C )
9594eleq1d 2239 . . . . . . . . . . . . . . . . 17  |-  ( k  =  ( f `  p )  ->  ( C  e.  CC  <->  [_ ( f `
 p )  / 
k ]_ C  e.  CC ) )
9693, 95rspc 2828 . . . . . . . . . . . . . . . 16  |-  ( ( f `  p )  e.  A  ->  ( A. k  e.  A  C  e.  CC  ->  [_ ( f `  p
)  /  k ]_ C  e.  CC )
)
9764, 91, 96sylc 62 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  [_ ( f `  p
)  /  k ]_ C  e.  CC )
98 eqid 2170 . . . . . . . . . . . . . . . 16  |-  ( k  e.  A  |->  C )  =  ( k  e.  A  |->  C )
9998fvmpts 5574 . . . . . . . . . . . . . . 15  |-  ( ( ( f `  p
)  e.  A  /\  [_ ( f `  p
)  /  k ]_ C  e.  CC )  ->  ( ( k  e.  A  |->  C ) `  ( f `  p
) )  =  [_ ( f `  p
)  /  k ]_ C )
10064, 97, 99syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  C ) `  ( f `  p
) )  =  [_ ( f `  p
)  /  k ]_ C )
10189, 100oveq12d 5871 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  B ) `
 ( f `  p ) )  x.  ( ( k  e.  A  |->  C ) `  ( f `  p
) ) )  =  ( [_ ( f `
 p )  / 
k ]_ B  x.  [_ ( f `  p
)  /  k ]_ C ) )
10266, 78, 1013eqtr4d 2213 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  ( B  x.  C ) ) `  ( f `  p
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  p
) )  x.  (
( k  e.  A  |->  C ) `  (
f `  p )
) ) )
103 fvco3 5567 . . . . . . . . . . . . 13  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  p  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  p )  =  ( ( k  e.  A  |->  ( B  x.  C
) ) `  (
f `  p )
) )
10463, 33, 103syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  p )  =  ( ( k  e.  A  |->  ( B  x.  C
) ) `  (
f `  p )
) )
105 fvco3 5567 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  p  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  p )  =  ( ( k  e.  A  |->  B ) `  (
f `  p )
) )
10663, 33, 105syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  p )  =  ( ( k  e.  A  |->  B ) `  (
f `  p )
) )
107 fvco3 5567 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  p  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  p )  =  ( ( k  e.  A  |->  C ) `  (
f `  p )
) )
10863, 33, 107syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  p )  =  ( ( k  e.  A  |->  C ) `  (
f `  p )
) )
109106, 108oveq12d 5871 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( ( ( k  e.  A  |->  B )  o.  f ) `
 p )  x.  ( ( ( k  e.  A  |->  C )  o.  f ) `  p ) )  =  ( ( ( k  e.  A  |->  B ) `
 ( f `  p ) )  x.  ( ( k  e.  A  |->  C ) `  ( f `  p
) ) ) )
110102, 104, 1093eqtr4d 2213 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  p )  =  ( ( ( ( k  e.  A  |->  B )  o.  f ) `  p )  x.  (
( ( k  e.  A  |->  C )  o.  f ) `  p
) ) )
11127iftrued 3533 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  p
) ,  1 )  =  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `
 p ) )
11227iftrued 3533 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  p
) ,  1 )  =  ( ( ( k  e.  A  |->  B )  o.  f ) `
 p ) )
11327iftrued 3533 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  p
) ,  1 )  =  ( ( ( k  e.  A  |->  C )  o.  f ) `
 p ) )
114112, 113oveq12d 5871 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 p ) ,  1 )  x.  if ( p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  p ) ,  1 ) )  =  ( ( ( ( k  e.  A  |->  B )  o.  f
) `  p )  x.  ( ( ( k  e.  A  |->  C )  o.  f ) `  p ) ) )
115110, 111, 1143eqtr4d 2213 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  ->  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  p
) ,  1 )  =  ( if ( p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  p ) ,  1 )  x.  if ( p  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  p ) ,  1 ) ) )
1161eqcomi 2174 . . . . . . . . . . 11  |-  1  =  ( 1  x.  1 )
117 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  -.  p  <_  ( `  A )
)  ->  -.  p  <_  ( `  A )
)
118117iffalsed 3536 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  -.  p  <_  ( `  A )
)  ->  if (
p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  x.  C
) )  o.  f
) `  p ) ,  1 )  =  1 )
119117iffalsed 3536 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  -.  p  <_  ( `  A )
)  ->  if (
p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  p ) ,  1 )  =  1 )
120117iffalsed 3536 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  -.  p  <_  ( `  A )
)  ->  if (
p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  p ) ,  1 )  =  1 )
121119, 120oveq12d 5871 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  -.  p  <_  ( `  A )
)  ->  ( if ( p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  p ) ,  1 )  x.  if ( p  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  p ) ,  1 ) )  =  ( 1  x.  1 ) )
122116, 118, 1213eqtr4a 2229 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  -.  p  <_  ( `  A )
)  ->  if (
p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  x.  C
) )  o.  f
) `  p ) ,  1 )  =  ( if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 p ) ,  1 )  x.  if ( p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  p ) ,  1 ) ) )
123 exmiddc 831 . . . . . . . . . . 11  |-  (DECID  p  <_ 
( `  A )  -> 
( p  <_  ( `  A )  \/  -.  p  <_  ( `  A )
) )
12440, 123syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( p  <_  ( `  A )  \/  -.  p  <_  ( `  A ) ) )
125115, 122, 124mpjaodan 793 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  if (
p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  x.  C
) )  o.  f
) `  p ) ,  1 )  =  ( if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 p ) ,  1 )  x.  if ( p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  p ) ,  1 ) ) )
12678, 75eqeltrd 2247 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( k  e.  A  |->  ( B  x.  C ) ) `  ( f `  p
) )  e.  CC )
127104, 126eqeltrd 2247 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  /\  p  <_  ( `  A ) )  -> 
( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  p )  e.  CC )
128127, 35, 40ifcldadc 3555 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  if (
p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  x.  C
) )  o.  f
) `  p ) ,  1 )  e.  CC )
129 fveq2 5496 . . . . . . . . . . . 12  |-  ( n  =  p  ->  (
( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  n
)  =  ( ( ( k  e.  A  |->  ( B  x.  C
) )  o.  f
) `  p )
)
13042, 129ifbieq1d 3548 . . . . . . . . . . 11  |-  ( n  =  p  ->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  x.  C
) )  o.  f
) `  n ) ,  1 )  =  if ( p  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  p ) ,  1 ) )
131 eqid 2170 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  ( B  x.  C
) )  o.  f
) `  n ) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `
 n ) ,  1 ) )
132130, 131fvmptg 5572 . . . . . . . . . 10  |-  ( ( p  e.  NN  /\  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  p
) ,  1 )  e.  CC )  -> 
( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `
 n ) ,  1 ) ) `  p )  =  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  p
) ,  1 ) )
13318, 128, 132syl2anc 409 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  n
) ,  1 ) ) `  p )  =  if ( p  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `
 p ) ,  1 ) )
13447, 61oveq12d 5871 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( (
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  1 ) ) `  p )  x.  ( ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  n ) ,  1 ) ) `
 p ) )  =  ( if ( p  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  p ) ,  1 )  x.  if ( p  <_ 
( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  p ) ,  1 ) ) )
135125, 133, 1343eqtr4d 2213 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  p  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  n
) ,  1 ) ) `  p )  =  ( ( ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  1 ) ) `  p )  x.  ( ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  C )  o.  f
) `  n ) ,  1 ) ) `
 p ) ) )
13615, 48, 62, 135prod3fmul 11504 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `
 n ) ,  1 ) ) ) `
 ( `  A
) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  ( ( ( k  e.  A  |->  B )  o.  f
) `  n ) ,  1 ) ) ) `  ( `  A
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ,  1 ) ) ) `  ( `  A ) ) ) )
137 fveq2 5496 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  ( B  x.  C
) ) `  m
)  =  ( ( k  e.  A  |->  ( B  x.  C ) ) `  ( f `
 n ) ) )
138 simprr 527 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A )
13967fmpttd 5651 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  ( B  x.  C
) ) : A --> CC )
140139adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( k  e.  A  |->  ( B  x.  C
) ) : A --> CC )
141140ffvelrnda 5631 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  ( B  x.  C
) ) `  m
)  e.  CC )
142 fvco3 5567 . . . . . . . . 9  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  n  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( B  x.  C
) ) `  (
f `  n )
) )
14323, 142sylan 281 . . . . . . . 8  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `
 n )  =  ( ( k  e.  A  |->  ( B  x.  C ) ) `  ( f `  n
) ) )
144137, 13, 138, 141, 143fprodseq 11546 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  ( B  x.  C
) ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  ( B  x.  C ) )  o.  f ) `  n
) ,  1 ) ) ) `  ( `  A ) ) )
145 fveq2 5496 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
14621ffvelrnda 5631 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  B ) `  m
)  e.  CC )
147 fvco3 5567 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  n  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
14823, 147sylan 281 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n )  =  ( ( k  e.  A  |->  B ) `  ( f `  n
) ) )
149145, 13, 138, 146, 148fprodseq 11546 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `  n
) ,  1 ) ) ) `  ( `  A ) ) )
150 fveq2 5496 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  C ) `  m
)  =  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) )
15151ffvelrnda 5631 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  (
( k  e.  A  |->  C ) `  m
)  e.  CC )
152 fvco3 5567 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( `  A
) ) --> A  /\  n  e.  ( 1 ... ( `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  =  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
15323, 152sylan 281 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( `  A )  e.  NN  /\  f : ( 1 ... ( `  A ) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( `  A ) ) )  ->  ( ( ( k  e.  A  |->  C )  o.  f ) `
 n )  =  ( ( k  e.  A  |->  C ) `  ( f `  n
) ) )
154150, 13, 138, 151, 153fprodseq 11546 . . . . . . . 8  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m
)  =  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ,  1 ) ) ) `  ( `  A ) ) )
155149, 154oveq12d 5871 . . . . . . 7  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  x.  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  B )  o.  f ) `
 n ) ,  1 ) ) ) `
 ( `  A
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ,  1 ) ) ) `  ( `  A ) ) ) )
156136, 144, 1553eqtr4d 2213 . . . . . 6  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  ( B  x.  C
) ) `  m
)  =  ( prod_
m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  x.  prod_ m  e.  A  ( (
k  e.  A  |->  C ) `  m ) ) )
157 prodfct 11550 . . . . . . . 8  |-  ( A. k  e.  A  ( B  x.  C )  e.  CC  ->  prod_ m  e.  A  ( ( k  e.  A  |->  ( B  x.  C ) ) `
 m )  = 
prod_ k  e.  A  ( B  x.  C
) )
15868, 157syl 14 . . . . . . 7  |-  ( ph  ->  prod_ m  e.  A  ( ( k  e.  A  |->  ( B  x.  C ) ) `  m )  =  prod_ k  e.  A  ( B  x.  C ) )
159158adantr 274 . . . . . 6  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  prod_ m  e.  A  ( ( k  e.  A  |->  ( B  x.  C
) ) `  m
)  =  prod_ k  e.  A  ( B  x.  C ) )
160 prodfct 11550 . . . . . . . . 9  |-  ( A. k  e.  A  B  e.  CC  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m )  = 
prod_ k  e.  A  B )
16179, 160syl 14 . . . . . . . 8  |-  ( ph  ->  prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  =  prod_ k  e.  A  B )
162 prodfct 11550 . . . . . . . . 9  |-  ( A. k  e.  A  C  e.  CC  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `
 m )  = 
prod_ k  e.  A  C )
16390, 162syl 14 . . . . . . . 8  |-  ( ph  ->  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m )  =  prod_ k  e.  A  C )
164161, 163oveq12d 5871 . . . . . . 7  |-  ( ph  ->  ( prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  x.  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) )  =  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C ) )
165164adantr 274 . . . . . 6  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  -> 
( prod_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  x.  prod_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) )  =  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C ) )
166156, 159, 1653eqtr3d 2211 . . . . 5  |-  ( (
ph  /\  ( ( `  A )  e.  NN  /\  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) )  ->  prod_ k  e.  A  ( B  x.  C )  =  ( prod_ k  e.  A  B  x.  prod_ k  e.  A  C
) )
167166expr 373 . . . 4  |-  ( (
ph  /\  ( `  A
)  e.  NN )  ->  ( f : ( 1 ... ( `  A ) ) -1-1-onto-> A  ->  prod_ k  e.  A  ( B  x.  C )  =  ( prod_ k  e.  A  B  x.  prod_ k  e.  A  C
) ) )
168167exlimdv 1812 . . 3  |-  ( (
ph  /\  ( `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A  ->  prod_ k  e.  A  ( B  x.  C )  =  (
prod_ k  e.  A  B  x.  prod_ k  e.  A  C ) ) )
169168expimpd 361 . 2  |-  ( ph  ->  ( ( ( `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( `  A
) ) -1-1-onto-> A )  ->  prod_ k  e.  A  ( B  x.  C )  =  ( prod_ k  e.  A  B  x.  prod_ k  e.  A  C ) ) )
170 fprodmul.1 . . 3  |-  ( ph  ->  A  e.  Fin )
171 fz1f1o 11338 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( `  A )  e.  NN  /\  E. f 
f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
172170, 171syl 14 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( `  A
) ) -1-1-onto-> A ) ) )
17312, 169, 172mpjaod 713 1  |-  ( ph  ->  prod_ k  e.  A  ( B  x.  C
)  =  ( prod_
k  e.  A  B  x.  prod_ k  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   [_csb 3049   (/)c0 3414   ifcif 3526   class class class wbr 3989    |-> cmpt 4050    o. ccom 4615   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853   Fincfn 6718   CCcc 7772   1c1 7775    x. cmul 7779    <_ cle 7955   NNcn 8878   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965    seqcseq 10401  ♯chash 10709   prod_cprod 11513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-proddc 11514
This theorem is referenced by:  fprodsplitdc  11559  fproddivap  11593
  Copyright terms: Public domain W3C validator