Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isorel | Unicode version |
Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isorel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 5217 | . . 3 | |
2 | 1 | simprbi 275 | . 2 |
3 | breq1 4001 | . . . 4 | |
4 | fveq2 5507 | . . . . 5 | |
5 | 4 | breq1d 4008 | . . . 4 |
6 | 3, 5 | bibi12d 235 | . . 3 |
7 | breq2 4002 | . . . 4 | |
8 | fveq2 5507 | . . . . 5 | |
9 | 8 | breq2d 4010 | . . . 4 |
10 | 7, 9 | bibi12d 235 | . . 3 |
11 | 6, 10 | rspc2v 2852 | . 2 |
12 | 2, 11 | mpan9 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 class class class wbr 3998 wf1o 5207 cfv 5208 wiso 5209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-isom 5217 |
This theorem is referenced by: isoresbr 5800 isoini 5809 isopolem 5813 isosolem 5815 smoiso 6293 isotilem 6995 supisolem 6997 ordiso2 7024 leisorel 10783 zfz1isolemiso 10785 seq3coll 10788 |
Copyright terms: Public domain | W3C validator |