Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isorel | Unicode version |
Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isorel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 5197 | . . 3 | |
2 | 1 | simprbi 273 | . 2 |
3 | breq1 3985 | . . . 4 | |
4 | fveq2 5486 | . . . . 5 | |
5 | 4 | breq1d 3992 | . . . 4 |
6 | 3, 5 | bibi12d 234 | . . 3 |
7 | breq2 3986 | . . . 4 | |
8 | fveq2 5486 | . . . . 5 | |
9 | 8 | breq2d 3994 | . . . 4 |
10 | 7, 9 | bibi12d 234 | . . 3 |
11 | 6, 10 | rspc2v 2843 | . 2 |
12 | 2, 11 | mpan9 279 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 class class class wbr 3982 wf1o 5187 cfv 5188 wiso 5189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-isom 5197 |
This theorem is referenced by: isoresbr 5777 isoini 5786 isopolem 5790 isosolem 5792 smoiso 6270 isotilem 6971 supisolem 6973 ordiso2 7000 leisorel 10750 zfz1isolemiso 10752 seq3coll 10755 |
Copyright terms: Public domain | W3C validator |