Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isorel | Unicode version |
Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isorel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 5207 | . . 3 | |
2 | 1 | simprbi 273 | . 2 |
3 | breq1 3992 | . . . 4 | |
4 | fveq2 5496 | . . . . 5 | |
5 | 4 | breq1d 3999 | . . . 4 |
6 | 3, 5 | bibi12d 234 | . . 3 |
7 | breq2 3993 | . . . 4 | |
8 | fveq2 5496 | . . . . 5 | |
9 | 8 | breq2d 4001 | . . . 4 |
10 | 7, 9 | bibi12d 234 | . . 3 |
11 | 6, 10 | rspc2v 2847 | . 2 |
12 | 2, 11 | mpan9 279 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 class class class wbr 3989 wf1o 5197 cfv 5198 wiso 5199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-isom 5207 |
This theorem is referenced by: isoresbr 5788 isoini 5797 isopolem 5801 isosolem 5803 smoiso 6281 isotilem 6983 supisolem 6985 ordiso2 7012 leisorel 10772 zfz1isolemiso 10774 seq3coll 10777 |
Copyright terms: Public domain | W3C validator |