| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isorel | Unicode version | ||
| Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isorel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 5279 |
. . 3
| |
| 2 | 1 | simprbi 275 |
. 2
|
| 3 | breq1 4046 |
. . . 4
| |
| 4 | fveq2 5575 |
. . . . 5
| |
| 5 | 4 | breq1d 4053 |
. . . 4
|
| 6 | 3, 5 | bibi12d 235 |
. . 3
|
| 7 | breq2 4047 |
. . . 4
| |
| 8 | fveq2 5575 |
. . . . 5
| |
| 9 | 8 | breq2d 4055 |
. . . 4
|
| 10 | 7, 9 | bibi12d 235 |
. . 3
|
| 11 | 6, 10 | rspc2v 2889 |
. 2
|
| 12 | 2, 11 | mpan9 281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-isom 5279 |
| This theorem is referenced by: isoresbr 5877 isoini 5886 isopolem 5890 isosolem 5892 smoiso 6387 isotilem 7107 supisolem 7109 ordiso2 7136 leisorel 10980 zfz1isolemiso 10982 seq3coll 10985 |
| Copyright terms: Public domain | W3C validator |