| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isorel | Unicode version | ||
| Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
| Ref | Expression |
|---|---|
| isorel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom 5326 |
. . 3
| |
| 2 | 1 | simprbi 275 |
. 2
|
| 3 | breq1 4085 |
. . . 4
| |
| 4 | fveq2 5626 |
. . . . 5
| |
| 5 | 4 | breq1d 4092 |
. . . 4
|
| 6 | 3, 5 | bibi12d 235 |
. . 3
|
| 7 | breq2 4086 |
. . . 4
| |
| 8 | fveq2 5626 |
. . . . 5
| |
| 9 | 8 | breq2d 4094 |
. . . 4
|
| 10 | 7, 9 | bibi12d 235 |
. . 3
|
| 11 | 6, 10 | rspc2v 2920 |
. 2
|
| 12 | 2, 11 | mpan9 281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-isom 5326 |
| This theorem is referenced by: isoresbr 5932 isoini 5941 isopolem 5945 isosolem 5947 smoiso 6446 isotilem 7169 supisolem 7171 ordiso2 7198 leisorel 11054 zfz1isolemiso 11056 seq3coll 11059 |
| Copyright terms: Public domain | W3C validator |