ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iso0 Unicode version

Theorem iso0 5796
Description: The empty set is an  R ,  S isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.)
Assertion
Ref Expression
iso0  |-  (/)  Isom  R ,  S  ( (/) ,  (/) )

Proof of Theorem iso0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1o0 5479 . 2  |-  (/) : (/) -1-1-onto-> (/)
2 ral0 3516 . 2  |-  A. x  e.  (/)  A. y  e.  (/)  ( x R y  <-> 
( (/) `  x ) S ( (/) `  y
) )
3 df-isom 5207 . 2  |-  ( (/)  Isom 
R ,  S  (
(/) ,  (/) )  <->  ( (/) : (/) -1-1-onto-> (/)  /\  A. x  e.  (/)  A. y  e.  (/)  ( x R y  <->  ( (/) `  x
) S ( (/) `  y ) ) ) )
41, 2, 3mpbir2an 937 1  |-  (/)  Isom  R ,  S  ( (/) ,  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wral 2448   (/)c0 3414   class class class wbr 3989   -1-1-onto->wf1o 5197   ` cfv 5198    Isom wiso 5199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-isom 5207
This theorem is referenced by:  zfz1iso  10776
  Copyright terms: Public domain W3C validator