ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iso0 Unicode version

Theorem iso0 5867
Description: The empty set is an  R ,  S isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.)
Assertion
Ref Expression
iso0  |-  (/)  Isom  R ,  S  ( (/) ,  (/) )

Proof of Theorem iso0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1o0 5544 . 2  |-  (/) : (/) -1-1-onto-> (/)
2 ral0 3553 . 2  |-  A. x  e.  (/)  A. y  e.  (/)  ( x R y  <-> 
( (/) `  x ) S ( (/) `  y
) )
3 df-isom 5268 . 2  |-  ( (/)  Isom 
R ,  S  (
(/) ,  (/) )  <->  ( (/) : (/) -1-1-onto-> (/)  /\  A. x  e.  (/)  A. y  e.  (/)  ( x R y  <->  ( (/) `  x
) S ( (/) `  y ) ) ) )
41, 2, 3mpbir2an 944 1  |-  (/)  Isom  R ,  S  ( (/) ,  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wral 2475   (/)c0 3451   class class class wbr 4034   -1-1-onto->wf1o 5258   ` cfv 5259    Isom wiso 5260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-isom 5268
This theorem is referenced by:  zfz1iso  10950
  Copyright terms: Public domain W3C validator