ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negiso Unicode version

Theorem negiso 8974
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
negiso.1  |-  F  =  ( x  e.  RR  |->  -u x )
Assertion
Ref Expression
negiso  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' F  =  F )

Proof of Theorem negiso
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negiso.1 . . . . . 6  |-  F  =  ( x  e.  RR  |->  -u x )
2 simpr 110 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR )  ->  x  e.  RR )
32renegcld 8399 . . . . . 6  |-  ( ( T.  /\  x  e.  RR )  ->  -u x  e.  RR )
4 simpr 110 . . . . . . 7  |-  ( ( T.  /\  y  e.  RR )  ->  y  e.  RR )
54renegcld 8399 . . . . . 6  |-  ( ( T.  /\  y  e.  RR )  ->  -u y  e.  RR )
6 recn 8005 . . . . . . . 8  |-  ( x  e.  RR  ->  x  e.  CC )
7 recn 8005 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
8 negcon2 8272 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
96, 7, 8syl2an 289 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
109adantl 277 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  =  -u y 
<->  y  =  -u x
) )
111, 3, 5, 10f1ocnv2d 6122 . . . . 5  |-  ( T. 
->  ( F : RR -1-1-onto-> RR  /\  `' F  =  (
y  e.  RR  |->  -u y ) ) )
1211mptru 1373 . . . 4  |-  ( F : RR -1-1-onto-> RR  /\  `' F  =  ( y  e.  RR  |->  -u y ) )
1312simpli 111 . . 3  |-  F : RR
-1-1-onto-> RR
14 simpl 109 . . . . . . . 8  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  z  e.  RR )
1514recnd 8048 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  z  e.  CC )
1615negcld 8317 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  -> 
-u z  e.  CC )
177adantl 277 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  y  e.  CC )
1817negcld 8317 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  -> 
-u y  e.  CC )
19 brcnvg 4843 . . . . . 6  |-  ( (
-u z  e.  CC  /\  -u y  e.  CC )  ->  ( -u z `'  <  -u y  <->  -u y  <  -u z ) )
2016, 18, 19syl2anc 411 . . . . 5  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( -u z `'  <  -u y  <->  -u y  <  -u z ) )
211a1i 9 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  F  =  ( x  e.  RR  |->  -u x
) )
22 negeq 8212 . . . . . . . 8  |-  ( x  =  z  ->  -u x  =  -u z )
2322adantl 277 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  y  e.  RR )  /\  x  =  z )  ->  -u x  = 
-u z )
2421, 23, 14, 16fvmptd 5638 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( F `  z
)  =  -u z
)
25 negeq 8212 . . . . . . . 8  |-  ( x  =  y  ->  -u x  =  -u y )
2625adantl 277 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  y  e.  RR )  /\  x  =  y )  ->  -u x  = 
-u y )
27 simpr 110 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  y  e.  RR )
2821, 26, 27, 18fvmptd 5638 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( F `  y
)  =  -u y
)
2924, 28breq12d 4042 . . . . 5  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( ( F `  z ) `'  <  ( F `  y )  <->  -u z `'  <  -u y
) )
30 ltneg 8481 . . . . 5  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <  y  <->  -u y  <  -u z
) )
3120, 29, 303bitr4rd 221 . . . 4  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) )
3231rgen2a 2548 . . 3  |-  A. z  e.  RR  A. y  e.  RR  ( z  < 
y  <->  ( F `  z ) `'  <  ( F `  y ) )
33 df-isom 5263 . . 3  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  <-> 
( F : RR -1-1-onto-> RR  /\ 
A. z  e.  RR  A. y  e.  RR  (
z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) ) )
3413, 32, 33mpbir2an 944 . 2  |-  F  Isom  <  ,  `'  <  ( RR ,  RR )
35 negeq 8212 . . . 4  |-  ( y  =  x  ->  -u y  =  -u x )
3635cbvmptv 4125 . . 3  |-  ( y  e.  RR  |->  -u y
)  =  ( x  e.  RR  |->  -u x
)
3712simpri 113 . . 3  |-  `' F  =  ( y  e.  RR  |->  -u y )
3836, 37, 13eqtr4i 2224 . 2  |-  `' F  =  F
3934, 38pm3.2i 272 1  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' F  =  F )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2164   A.wral 2472   class class class wbr 4029    |-> cmpt 4090   `'ccnv 4658   -1-1-onto->wf1o 5253   ` cfv 5254    Isom wiso 5255   CCcc 7870   RRcr 7871    < clt 8054   -ucneg 8191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193
This theorem is referenced by:  infrenegsupex  9659
  Copyright terms: Public domain W3C validator