Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negiso | Unicode version |
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
negiso.1 |
Ref | Expression |
---|---|
negiso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negiso.1 | . . . . . 6 | |
2 | simpr 109 | . . . . . . 7 | |
3 | 2 | renegcld 8286 | . . . . . 6 |
4 | simpr 109 | . . . . . . 7 | |
5 | 4 | renegcld 8286 | . . . . . 6 |
6 | recn 7894 | . . . . . . . 8 | |
7 | recn 7894 | . . . . . . . 8 | |
8 | negcon2 8159 | . . . . . . . 8 | |
9 | 6, 7, 8 | syl2an 287 | . . . . . . 7 |
10 | 9 | adantl 275 | . . . . . 6 |
11 | 1, 3, 5, 10 | f1ocnv2d 6050 | . . . . 5 |
12 | 11 | mptru 1357 | . . . 4 |
13 | 12 | simpli 110 | . . 3 |
14 | simpl 108 | . . . . . . . 8 | |
15 | 14 | recnd 7935 | . . . . . . 7 |
16 | 15 | negcld 8204 | . . . . . 6 |
17 | 7 | adantl 275 | . . . . . . 7 |
18 | 17 | negcld 8204 | . . . . . 6 |
19 | brcnvg 4790 | . . . . . 6 | |
20 | 16, 18, 19 | syl2anc 409 | . . . . 5 |
21 | 1 | a1i 9 | . . . . . . 7 |
22 | negeq 8099 | . . . . . . . 8 | |
23 | 22 | adantl 275 | . . . . . . 7 |
24 | 21, 23, 14, 16 | fvmptd 5575 | . . . . . 6 |
25 | negeq 8099 | . . . . . . . 8 | |
26 | 25 | adantl 275 | . . . . . . 7 |
27 | simpr 109 | . . . . . . 7 | |
28 | 21, 26, 27, 18 | fvmptd 5575 | . . . . . 6 |
29 | 24, 28 | breq12d 4000 | . . . . 5 |
30 | ltneg 8368 | . . . . 5 | |
31 | 20, 29, 30 | 3bitr4rd 220 | . . . 4 |
32 | 31 | rgen2a 2524 | . . 3 |
33 | df-isom 5205 | . . 3 | |
34 | 13, 32, 33 | mpbir2an 937 | . 2 |
35 | negeq 8099 | . . . 4 | |
36 | 35 | cbvmptv 4083 | . . 3 |
37 | 12 | simpri 112 | . . 3 |
38 | 36, 37, 1 | 3eqtr4i 2201 | . 2 |
39 | 34, 38 | pm3.2i 270 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wtru 1349 wcel 2141 wral 2448 class class class wbr 3987 cmpt 4048 ccnv 4608 wf1o 5195 cfv 5196 wiso 5197 cc 7759 cr 7760 clt 7941 cneg 8078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-ltxr 7946 df-sub 8079 df-neg 8080 |
This theorem is referenced by: infrenegsupex 9540 |
Copyright terms: Public domain | W3C validator |