ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negiso Unicode version

Theorem negiso 8737
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
negiso.1  |-  F  =  ( x  e.  RR  |->  -u x )
Assertion
Ref Expression
negiso  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' F  =  F )

Proof of Theorem negiso
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negiso.1 . . . . . 6  |-  F  =  ( x  e.  RR  |->  -u x )
2 simpr 109 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR )  ->  x  e.  RR )
32renegcld 8166 . . . . . 6  |-  ( ( T.  /\  x  e.  RR )  ->  -u x  e.  RR )
4 simpr 109 . . . . . . 7  |-  ( ( T.  /\  y  e.  RR )  ->  y  e.  RR )
54renegcld 8166 . . . . . 6  |-  ( ( T.  /\  y  e.  RR )  ->  -u y  e.  RR )
6 recn 7777 . . . . . . . 8  |-  ( x  e.  RR  ->  x  e.  CC )
7 recn 7777 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
8 negcon2 8039 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
96, 7, 8syl2an 287 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
109adantl 275 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  =  -u y 
<->  y  =  -u x
) )
111, 3, 5, 10f1ocnv2d 5982 . . . . 5  |-  ( T. 
->  ( F : RR -1-1-onto-> RR  /\  `' F  =  (
y  e.  RR  |->  -u y ) ) )
1211mptru 1341 . . . 4  |-  ( F : RR -1-1-onto-> RR  /\  `' F  =  ( y  e.  RR  |->  -u y ) )
1312simpli 110 . . 3  |-  F : RR
-1-1-onto-> RR
14 simpl 108 . . . . . . . 8  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  z  e.  RR )
1514recnd 7818 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  z  e.  CC )
1615negcld 8084 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  -> 
-u z  e.  CC )
177adantl 275 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  y  e.  CC )
1817negcld 8084 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  -> 
-u y  e.  CC )
19 brcnvg 4728 . . . . . 6  |-  ( (
-u z  e.  CC  /\  -u y  e.  CC )  ->  ( -u z `'  <  -u y  <->  -u y  <  -u z ) )
2016, 18, 19syl2anc 409 . . . . 5  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( -u z `'  <  -u y  <->  -u y  <  -u z ) )
211a1i 9 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  F  =  ( x  e.  RR  |->  -u x
) )
22 negeq 7979 . . . . . . . 8  |-  ( x  =  z  ->  -u x  =  -u z )
2322adantl 275 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  y  e.  RR )  /\  x  =  z )  ->  -u x  = 
-u z )
2421, 23, 14, 16fvmptd 5510 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( F `  z
)  =  -u z
)
25 negeq 7979 . . . . . . . 8  |-  ( x  =  y  ->  -u x  =  -u y )
2625adantl 275 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  y  e.  RR )  /\  x  =  y )  ->  -u x  = 
-u y )
27 simpr 109 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  y  e.  RR )
2821, 26, 27, 18fvmptd 5510 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( F `  y
)  =  -u y
)
2924, 28breq12d 3950 . . . . 5  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( ( F `  z ) `'  <  ( F `  y )  <->  -u z `'  <  -u y
) )
30 ltneg 8248 . . . . 5  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <  y  <->  -u y  <  -u z
) )
3120, 29, 303bitr4rd 220 . . . 4  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) )
3231rgen2a 2489 . . 3  |-  A. z  e.  RR  A. y  e.  RR  ( z  < 
y  <->  ( F `  z ) `'  <  ( F `  y ) )
33 df-isom 5140 . . 3  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  <-> 
( F : RR -1-1-onto-> RR  /\ 
A. z  e.  RR  A. y  e.  RR  (
z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) ) )
3413, 32, 33mpbir2an 927 . 2  |-  F  Isom  <  ,  `'  <  ( RR ,  RR )
35 negeq 7979 . . . 4  |-  ( y  =  x  ->  -u y  =  -u x )
3635cbvmptv 4032 . . 3  |-  ( y  e.  RR  |->  -u y
)  =  ( x  e.  RR  |->  -u x
)
3712simpri 112 . . 3  |-  `' F  =  ( y  e.  RR  |->  -u y )
3836, 37, 13eqtr4i 2171 . 2  |-  `' F  =  F
3934, 38pm3.2i 270 1  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' F  =  F )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1332   T. wtru 1333    e. wcel 1481   A.wral 2417   class class class wbr 3937    |-> cmpt 3997   `'ccnv 4546   -1-1-onto->wf1o 5130   ` cfv 5131    Isom wiso 5132   CCcc 7642   RRcr 7643    < clt 7824   -ucneg 7958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-ltxr 7829  df-sub 7959  df-neg 7960
This theorem is referenced by:  infrenegsupex  9416
  Copyright terms: Public domain W3C validator