ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negiso Unicode version

Theorem negiso 8858
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
negiso.1  |-  F  =  ( x  e.  RR  |->  -u x )
Assertion
Ref Expression
negiso  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' F  =  F )

Proof of Theorem negiso
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negiso.1 . . . . . 6  |-  F  =  ( x  e.  RR  |->  -u x )
2 simpr 109 . . . . . . 7  |-  ( ( T.  /\  x  e.  RR )  ->  x  e.  RR )
32renegcld 8286 . . . . . 6  |-  ( ( T.  /\  x  e.  RR )  ->  -u x  e.  RR )
4 simpr 109 . . . . . . 7  |-  ( ( T.  /\  y  e.  RR )  ->  y  e.  RR )
54renegcld 8286 . . . . . 6  |-  ( ( T.  /\  y  e.  RR )  ->  -u y  e.  RR )
6 recn 7894 . . . . . . . 8  |-  ( x  e.  RR  ->  x  e.  CC )
7 recn 7894 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
8 negcon2 8159 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
96, 7, 8syl2an 287 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
109adantl 275 . . . . . 6  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  =  -u y 
<->  y  =  -u x
) )
111, 3, 5, 10f1ocnv2d 6050 . . . . 5  |-  ( T. 
->  ( F : RR -1-1-onto-> RR  /\  `' F  =  (
y  e.  RR  |->  -u y ) ) )
1211mptru 1357 . . . 4  |-  ( F : RR -1-1-onto-> RR  /\  `' F  =  ( y  e.  RR  |->  -u y ) )
1312simpli 110 . . 3  |-  F : RR
-1-1-onto-> RR
14 simpl 108 . . . . . . . 8  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  z  e.  RR )
1514recnd 7935 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  z  e.  CC )
1615negcld 8204 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  -> 
-u z  e.  CC )
177adantl 275 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  y  e.  CC )
1817negcld 8204 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  -> 
-u y  e.  CC )
19 brcnvg 4790 . . . . . 6  |-  ( (
-u z  e.  CC  /\  -u y  e.  CC )  ->  ( -u z `'  <  -u y  <->  -u y  <  -u z ) )
2016, 18, 19syl2anc 409 . . . . 5  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( -u z `'  <  -u y  <->  -u y  <  -u z ) )
211a1i 9 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  F  =  ( x  e.  RR  |->  -u x
) )
22 negeq 8099 . . . . . . . 8  |-  ( x  =  z  ->  -u x  =  -u z )
2322adantl 275 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  y  e.  RR )  /\  x  =  z )  ->  -u x  = 
-u z )
2421, 23, 14, 16fvmptd 5575 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( F `  z
)  =  -u z
)
25 negeq 8099 . . . . . . . 8  |-  ( x  =  y  ->  -u x  =  -u y )
2625adantl 275 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  y  e.  RR )  /\  x  =  y )  ->  -u x  = 
-u y )
27 simpr 109 . . . . . . 7  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  y  e.  RR )
2821, 26, 27, 18fvmptd 5575 . . . . . 6  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( F `  y
)  =  -u y
)
2924, 28breq12d 4000 . . . . 5  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( ( F `  z ) `'  <  ( F `  y )  <->  -u z `'  <  -u y
) )
30 ltneg 8368 . . . . 5  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <  y  <->  -u y  <  -u z
) )
3120, 29, 303bitr4rd 220 . . . 4  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) )
3231rgen2a 2524 . . 3  |-  A. z  e.  RR  A. y  e.  RR  ( z  < 
y  <->  ( F `  z ) `'  <  ( F `  y ) )
33 df-isom 5205 . . 3  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  <-> 
( F : RR -1-1-onto-> RR  /\ 
A. z  e.  RR  A. y  e.  RR  (
z  <  y  <->  ( F `  z ) `'  <  ( F `  y ) ) ) )
3413, 32, 33mpbir2an 937 . 2  |-  F  Isom  <  ,  `'  <  ( RR ,  RR )
35 negeq 8099 . . . 4  |-  ( y  =  x  ->  -u y  =  -u x )
3635cbvmptv 4083 . . 3  |-  ( y  e.  RR  |->  -u y
)  =  ( x  e.  RR  |->  -u x
)
3712simpri 112 . . 3  |-  `' F  =  ( y  e.  RR  |->  -u y )
3836, 37, 13eqtr4i 2201 . 2  |-  `' F  =  F
3934, 38pm3.2i 270 1  |-  ( F 
Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' F  =  F )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   T. wtru 1349    e. wcel 2141   A.wral 2448   class class class wbr 3987    |-> cmpt 4048   `'ccnv 4608   -1-1-onto->wf1o 5195   ` cfv 5196    Isom wiso 5197   CCcc 7759   RRcr 7760    < clt 7941   -ucneg 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-addass 7863  ax-distr 7865  ax-i2m1 7866  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-pnf 7943  df-mnf 7944  df-ltxr 7946  df-sub 8079  df-neg 8080
This theorem is referenced by:  infrenegsupex  9540
  Copyright terms: Public domain W3C validator