Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negiso | Unicode version |
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
negiso.1 |
Ref | Expression |
---|---|
negiso |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negiso.1 | . . . . . 6 | |
2 | simpr 109 | . . . . . . 7 | |
3 | 2 | renegcld 8278 | . . . . . 6 |
4 | simpr 109 | . . . . . . 7 | |
5 | 4 | renegcld 8278 | . . . . . 6 |
6 | recn 7886 | . . . . . . . 8 | |
7 | recn 7886 | . . . . . . . 8 | |
8 | negcon2 8151 | . . . . . . . 8 | |
9 | 6, 7, 8 | syl2an 287 | . . . . . . 7 |
10 | 9 | adantl 275 | . . . . . 6 |
11 | 1, 3, 5, 10 | f1ocnv2d 6042 | . . . . 5 |
12 | 11 | mptru 1352 | . . . 4 |
13 | 12 | simpli 110 | . . 3 |
14 | simpl 108 | . . . . . . . 8 | |
15 | 14 | recnd 7927 | . . . . . . 7 |
16 | 15 | negcld 8196 | . . . . . 6 |
17 | 7 | adantl 275 | . . . . . . 7 |
18 | 17 | negcld 8196 | . . . . . 6 |
19 | brcnvg 4785 | . . . . . 6 | |
20 | 16, 18, 19 | syl2anc 409 | . . . . 5 |
21 | 1 | a1i 9 | . . . . . . 7 |
22 | negeq 8091 | . . . . . . . 8 | |
23 | 22 | adantl 275 | . . . . . . 7 |
24 | 21, 23, 14, 16 | fvmptd 5567 | . . . . . 6 |
25 | negeq 8091 | . . . . . . . 8 | |
26 | 25 | adantl 275 | . . . . . . 7 |
27 | simpr 109 | . . . . . . 7 | |
28 | 21, 26, 27, 18 | fvmptd 5567 | . . . . . 6 |
29 | 24, 28 | breq12d 3995 | . . . . 5 |
30 | ltneg 8360 | . . . . 5 | |
31 | 20, 29, 30 | 3bitr4rd 220 | . . . 4 |
32 | 31 | rgen2a 2520 | . . 3 |
33 | df-isom 5197 | . . 3 | |
34 | 13, 32, 33 | mpbir2an 932 | . 2 |
35 | negeq 8091 | . . . 4 | |
36 | 35 | cbvmptv 4078 | . . 3 |
37 | 12 | simpri 112 | . . 3 |
38 | 36, 37, 1 | 3eqtr4i 2196 | . 2 |
39 | 34, 38 | pm3.2i 270 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wtru 1344 wcel 2136 wral 2444 class class class wbr 3982 cmpt 4043 ccnv 4603 wf1o 5187 cfv 5188 wiso 5189 cc 7751 cr 7752 clt 7933 cneg 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-sub 8071 df-neg 8072 |
This theorem is referenced by: infrenegsupex 9532 |
Copyright terms: Public domain | W3C validator |